| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgft | Structured version Visualization version Unicode version | ||
| Description: Closed theorem form of vtoclgf 3264. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by JJ, 11-Aug-2021.) |
| Ref | Expression |
|---|---|
| vtoclgft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 3215 |
. . . . 5
| |
| 2 | nfnfc1 2767 |
. . . . . 6
| |
| 3 | nfcvd 2765 |
. . . . . . 7
| |
| 4 | id 22 |
. . . . . . 7
| |
| 5 | 3, 4 | nfeqd 2772 |
. . . . . 6
|
| 6 | eqeq1 2626 |
. . . . . . 7
| |
| 7 | 6 | a1i 11 |
. . . . . 6
|
| 8 | 2, 5, 7 | cbvexd 2278 |
. . . . 5
|
| 9 | 1, 8 | syl5ib 234 |
. . . 4
|
| 10 | 9 | ad2antrr 762 |
. . 3
|
| 11 | 10 | 3impia 1261 |
. 2
|
| 12 | biimp 205 |
. . . . . . . . 9
| |
| 13 | 12 | imim2i 16 |
. . . . . . . 8
|
| 14 | 13 | com23 86 |
. . . . . . 7
|
| 15 | 14 | imp 445 |
. . . . . 6
|
| 16 | 15 | alanimi 1744 |
. . . . 5
|
| 17 | 19.23t 2079 |
. . . . . 6
| |
| 18 | 17 | adantl 482 |
. . . . 5
|
| 19 | 16, 18 | syl5ib 234 |
. . . 4
|
| 20 | 19 | imp 445 |
. . 3
|
| 21 | 20 | 3adant3 1081 |
. 2
|
| 22 | 11, 21 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
| This theorem is referenced by: vtocldf 3256 bj-vtoclgfALT 33021 |
| Copyright terms: Public domain | W3C validator |