MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexd Structured version   Visualization version   Unicode version

Theorem cbvexd 2278
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2337. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypotheses
Ref Expression
cbvald.1  |-  F/ y
ph
cbvald.2  |-  ( ph  ->  F/ y ps )
cbvald.3  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
Assertion
Ref Expression
cbvexd  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ph( y)    ps( x, y)    ch( y)

Proof of Theorem cbvexd
StepHypRef Expression
1 cbvald.1 . . . 4  |-  F/ y
ph
2 cbvald.2 . . . . 5  |-  ( ph  ->  F/ y ps )
32nfnd 1785 . . . 4  |-  ( ph  ->  F/ y  -.  ps )
4 cbvald.3 . . . . 5  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
5 notbi 309 . . . . 5  |-  ( ( ps  <->  ch )  <->  ( -.  ps 
<->  -.  ch ) )
64, 5syl6ib 241 . . . 4  |-  ( ph  ->  ( x  =  y  ->  ( -.  ps  <->  -. 
ch ) ) )
71, 3, 6cbvald 2277 . . 3  |-  ( ph  ->  ( A. x  -.  ps 
<-> 
A. y  -.  ch ) )
87notbid 308 . 2  |-  ( ph  ->  ( -.  A. x  -.  ps  <->  -.  A. y  -.  ch ) )
9 df-ex 1705 . 2  |-  ( E. x ps  <->  -.  A. x  -.  ps )
10 df-ex 1705 . 2  |-  ( E. y ch  <->  -.  A. y  -.  ch )
118, 9, 103bitr4g 303 1  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  cbvexdvaOLD  2284  vtoclgft  3254  vtoclgftOLD  3255  dfid3  5025  axrepndlem2  9415  axunnd  9418  axpowndlem2  9420  axpownd  9423  axregndlem2  9425  axinfndlem1  9427  axacndlem4  9432  wl-mo2df  33352  wl-eudf  33354  wl-mo2t  33357
  Copyright terms: Public domain W3C validator