| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbalnae | Structured version Visualization version Unicode version | ||
| Description: A theorem used in elimination of disjoint variable restrictions by replacing them with distinctors. (Contributed by Wolf Lammen, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-sbalnae |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4b 2358 |
. . . . 5
| |
| 2 | nfnae 2318 |
. . . . . . 7
| |
| 3 | nfnae 2318 |
. . . . . . 7
| |
| 4 | 2, 3 | nfan 1828 |
. . . . . 6
|
| 5 | nfeqf 2301 |
. . . . . . 7
| |
| 6 | 19.21t 2073 |
. . . . . . . 8
| |
| 7 | 6 | bicomd 213 |
. . . . . . 7
|
| 8 | 5, 7 | syl 17 |
. . . . . 6
|
| 9 | 4, 8 | albid 2090 |
. . . . 5
|
| 10 | 1, 9 | sylan9bbr 737 |
. . . 4
|
| 11 | nfnae 2318 |
. . . . . . 7
| |
| 12 | sb4b 2358 |
. . . . . . 7
| |
| 13 | 11, 12 | albid 2090 |
. . . . . 6
|
| 14 | alcom 2037 |
. . . . . 6
| |
| 15 | 13, 14 | syl6bb 276 |
. . . . 5
|
| 16 | 15 | adantl 482 |
. . . 4
|
| 17 | 10, 16 | bitr4d 271 |
. . 3
|
| 18 | 17 | ex 450 |
. 2
|
| 19 | sbequ12 2111 |
. . . 4
| |
| 20 | 19 | sps 2055 |
. . 3
|
| 21 | sbequ12 2111 |
. . . . 5
| |
| 22 | 21 | sps 2055 |
. . . 4
|
| 23 | 22 | dral2 2324 |
. . 3
|
| 24 | 20, 23 | bitr3d 270 |
. 2
|
| 25 | 18, 24 | pm2.61d2 172 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: wl-sbal1 33346 wl-sbal2 33347 |
| Copyright terms: Public domain | W3C validator |