| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sbcom2d | Structured version Visualization version Unicode version | ||
| Description: Version of sbcom2 2445 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019.) |
| Ref | Expression |
|---|---|
| wl-sbcom2d.1 |
|
| wl-sbcom2d.2 |
|
| wl-sbcom2d.3 |
|
| Ref | Expression |
|---|---|
| wl-sbcom2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1890 |
. 2
| |
| 2 | ax6ev 1890 |
. 2
| |
| 3 | wl-sbcom2d.2 |
. . . . . . . 8
| |
| 4 | wl-sbcom2d-lem2 33343 |
. . . . . . . . . . 11
| |
| 5 | alcom 2037 |
. . . . . . . . . . . 12
| |
| 6 | ancomst 468 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | 2albii 1748 |
. . . . . . . . . . . 12
|
| 8 | 5, 7 | bitri 264 |
. . . . . . . . . . 11
|
| 9 | 4, 8 | syl6bb 276 |
. . . . . . . . . 10
|
| 10 | 9 | naecoms 2313 |
. . . . . . . . 9
|
| 11 | wl-sbcom2d-lem2 33343 |
. . . . . . . . 9
| |
| 12 | 10, 11 | bitr4d 271 |
. . . . . . . 8
|
| 13 | 3, 12 | syl 17 |
. . . . . . 7
|
| 14 | 13 | adantl 482 |
. . . . . 6
|
| 15 | wl-sbcom2d.1 |
. . . . . . . 8
| |
| 16 | wl-sbcom2d-lem1 33342 |
. . . . . . . 8
| |
| 17 | 15, 16 | syl5 34 |
. . . . . . 7
|
| 18 | 17 | imp 445 |
. . . . . 6
|
| 19 | wl-sbcom2d.3 |
. . . . . . . . 9
| |
| 20 | wl-sbcom2d-lem1 33342 |
. . . . . . . . 9
| |
| 21 | 19, 20 | syl5 34 |
. . . . . . . 8
|
| 22 | 21 | ancoms 469 |
. . . . . . 7
|
| 23 | 22 | imp 445 |
. . . . . 6
|
| 24 | 14, 18, 23 | 3bitr3rd 299 |
. . . . 5
|
| 25 | 24 | exp31 630 |
. . . 4
|
| 26 | 25 | exlimdv 1861 |
. . 3
|
| 27 | 26 | exlimiv 1858 |
. 2
|
| 28 | 1, 2, 27 | mp2 9 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |