MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunres Structured version   Visualization version   Unicode version

Theorem wunres 9553
Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1  |-  ( ph  ->  U  e. WUni )
wunop.2  |-  ( ph  ->  A  e.  U )
Assertion
Ref Expression
wunres  |-  ( ph  ->  ( A  |`  B )  e.  U )

Proof of Theorem wunres
StepHypRef Expression
1 wun0.1 . 2  |-  ( ph  ->  U  e. WUni )
2 wunop.2 . 2  |-  ( ph  ->  A  e.  U )
3 resss 5422 . . 3  |-  ( A  |`  B )  C_  A
43a1i 11 . 2  |-  ( ph  ->  ( A  |`  B ) 
C_  A )
51, 2, 4wunss 9534 1  |-  ( ph  ->  ( A  |`  B )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    C_ wss 3574    |` cres 5116  WUnicwun 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-tr 4753  df-res 5126  df-wun 9524
This theorem is referenced by:  wunsets  15900
  Copyright terms: Public domain W3C validator