MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelelxp Structured version   Visualization version   GIF version

Theorem 0nelelxp 5145
Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
Assertion
Ref Expression
0nelelxp (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)

Proof of Theorem 0nelelxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 5131 . 2 (𝐶 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2 0nelop 4960 . . . . 5 ¬ ∅ ∈ ⟨𝑥, 𝑦
3 eleq2 2690 . . . . 5 (𝐶 = ⟨𝑥, 𝑦⟩ → (∅ ∈ 𝐶 ↔ ∅ ∈ ⟨𝑥, 𝑦⟩))
42, 3mtbiri 317 . . . 4 (𝐶 = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ 𝐶)
54adantr 481 . . 3 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
65exlimivv 1860 . 2 (∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) → ¬ ∅ ∈ 𝐶)
71, 6sylbi 207 1 (𝐶 ∈ (𝐴 × 𝐵) → ¬ ∅ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  c0 3915  cop 4183   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120
This theorem is referenced by:  dmsn0el  5604  onxpdisj  5847
  Copyright terms: Public domain W3C validator