| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelelxp | Structured version Visualization version Unicode version | ||
| Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.) |
| Ref | Expression |
|---|---|
| 0nelelxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5131 |
. 2
| |
| 2 | 0nelop 4960 |
. . . . 5
| |
| 3 | eleq2 2690 |
. . . . 5
| |
| 4 | 2, 3 | mtbiri 317 |
. . . 4
|
| 5 | 4 | adantr 481 |
. . 3
|
| 6 | 5 | exlimivv 1860 |
. 2
|
| 7 | 1, 6 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: dmsn0el 5604 onxpdisj 5847 |
| Copyright terms: Public domain | W3C validator |