![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ntr | Structured version Visualization version GIF version |
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
0ntr | ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 3942 | . . . . 5 ⊢ (𝑋 ⊆ 𝑆 ↔ (𝑋 ∖ 𝑆) = ∅) | |
2 | eqss 3618 | . . . . . . . . 9 ⊢ (𝑆 = 𝑋 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆)) | |
3 | fveq2 6191 | . . . . . . . . . . . . 13 ⊢ (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋)) | |
4 | clscld.1 | . . . . . . . . . . . . . 14 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | ntrtop 20874 | . . . . . . . . . . . . 13 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
6 | 3, 5 | sylan9eqr 2678 | . . . . . . . . . . . 12 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋) |
7 | 6 | eqeq1d 2624 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅)) |
8 | 7 | biimpd 219 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)) |
9 | 8 | ex 450 | . . . . . . . . 9 ⊢ (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
10 | 2, 9 | syl5bir 233 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ((𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
11 | 10 | expd 452 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (𝑋 ⊆ 𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))) |
12 | 11 | com34 91 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)))) |
13 | 12 | imp32 449 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)) |
14 | 1, 13 | syl5bir 233 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋 ∖ 𝑆) = ∅ → 𝑋 = ∅)) |
15 | 14 | necon3d 2815 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋 ∖ 𝑆) ≠ ∅)) |
16 | 15 | imp 445 | . 2 ⊢ (((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋 ∖ 𝑆) ≠ ∅) |
17 | 16 | an32s 846 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 ‘cfv 5888 Topctop 20698 intcnt 20821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-top 20699 df-ntr 20824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |