MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.3rz Structured version   Visualization version   GIF version

Theorem r19.3rz 4062
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008.)
Hypothesis
Ref Expression
r19.3rz.1 𝑥𝜑
Assertion
Ref Expression
r19.3rz (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.3rz
StepHypRef Expression
1 n0 3931 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 biimt 350 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ (∃𝑥 𝑥𝐴𝜑)))
31, 2sylbi 207 . 2 (𝐴 ≠ ∅ → (𝜑 ↔ (∃𝑥 𝑥𝐴𝜑)))
4 df-ral 2917 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
5 r19.3rz.1 . . . 4 𝑥𝜑
6519.23 2080 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ (∃𝑥 𝑥𝐴𝜑))
74, 6bitri 264 . 2 (∀𝑥𝐴 𝜑 ↔ (∃𝑥 𝑥𝐴𝜑))
83, 7syl6bbr 278 1 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wex 1704  wnf 1708  wcel 1990  wne 2794  wral 2912  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  r19.28z  4063  r19.3rzv  4064  r19.27z  4070  2reu4a  41189
  Copyright terms: Public domain W3C validator