| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvssco | Structured version Visualization version GIF version | ||
| Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
| Ref | Expression |
|---|---|
| cnvssco | ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom 2037 | . 2 ⊢ (∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝐴 → 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶)) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝐴 → 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶))) | |
| 2 | relcnv 5503 | . . 3 ⊢ Rel ◡𝐴 | |
| 3 | ssrel 5207 | . . 3 ⊢ (Rel ◡𝐴 → (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝐴 → 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶)))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝐴 → 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶))) |
| 5 | 19.37v 1910 | . . . 4 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | |
| 6 | vex 3203 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | vex 3203 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | 6, 7 | brcnv 5305 | . . . . . 6 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 9 | df-br 4654 | . . . . . 6 ⊢ (𝑦◡𝐴𝑥 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝐴) | |
| 10 | 8, 9 | bitr3i 266 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝐴) |
| 11 | 7, 6 | brco 5292 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑦 ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) |
| 12 | 6, 7 | brcnv 5305 | . . . . . . 7 ⊢ (𝑦◡(𝐵 ∘ 𝐶)𝑥 ↔ 𝑥(𝐵 ∘ 𝐶)𝑦) |
| 13 | df-br 4654 | . . . . . . 7 ⊢ (𝑦◡(𝐵 ∘ 𝐶)𝑥 ↔ 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶)) | |
| 14 | 12, 13 | bitr3i 266 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑦 ↔ 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶)) |
| 15 | 11, 14 | bitr3i 266 | . . . . 5 ⊢ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦) ↔ 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶)) |
| 16 | 10, 15 | imbi12i 340 | . . . 4 ⊢ ((𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ (〈𝑦, 𝑥〉 ∈ ◡𝐴 → 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶))) |
| 17 | 5, 16 | bitri 264 | . . 3 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ (〈𝑦, 𝑥〉 ∈ ◡𝐴 → 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶))) |
| 18 | 17 | 2albii 1748 | . 2 ⊢ (∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝐴 → 〈𝑦, 𝑥〉 ∈ ◡(𝐵 ∘ 𝐶))) |
| 19 | 1, 4, 18 | 3bitr4i 292 | 1 ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 ∈ wcel 1990 ⊆ wss 3574 〈cop 4183 class class class wbr 4653 ◡ccnv 5113 ∘ ccom 5118 Rel wrel 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 |
| This theorem is referenced by: refimssco 37913 |
| Copyright terms: Public domain | W3C validator |