Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj150 Structured version   Visualization version   GIF version

Theorem bnj150 30946
Description: Technical lemma for bnj151 30947. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj150.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj150.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj150.3 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj150.4 (𝜑′[1𝑜 / 𝑛]𝜑)
bnj150.5 (𝜓′[1𝑜 / 𝑛]𝜓)
bnj150.6 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
bnj150.7 (𝜁′[1𝑜 / 𝑛]𝜁)
bnj150.8 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj150.9 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj150.10 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj150.11 (𝜁″[𝐹 / 𝑓]𝜁′)
Assertion
Ref Expression
bnj150 𝜃0
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑛,𝑥   𝑓,𝜁″   𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝐹(𝑥,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜑″(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁″(𝑥,𝑦,𝑖,𝑛)   𝜃0(𝑥,𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj150
StepHypRef Expression
1 0ex 4790 . . . . . . . . . 10 ∅ ∈ V
2 bnj93 30933 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
3 funsng 5937 . . . . . . . . . 10 ((∅ ∈ V ∧ pred(𝑥, 𝐴, 𝑅) ∈ V) → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
41, 2, 3sylancr 695 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
5 bnj150.8 . . . . . . . . . 10 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
65funeqi 5909 . . . . . . . . 9 (Fun 𝐹 ↔ Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
74, 6sylibr 224 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun 𝐹)
85bnj96 30935 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1𝑜)
97, 8bnj1422 30908 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → 𝐹 Fn 1𝑜)
105bnj97 30936 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
11 bnj150.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
12 bnj150.4 . . . . . . . . 9 (𝜑′[1𝑜 / 𝑛]𝜑)
13 bnj150.9 . . . . . . . . 9 (𝜑″[𝐹 / 𝑓]𝜑′)
1411, 12, 13, 5bnj125 30942 . . . . . . . 8 (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
1510, 14sylibr 224 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → 𝜑″)
169, 15jca 554 . . . . . 6 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1𝑜𝜑″))
17 bnj98 30937 . . . . . . 7 𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
18 bnj150.2 . . . . . . . 8 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
19 bnj150.5 . . . . . . . 8 (𝜓′[1𝑜 / 𝑛]𝜓)
20 bnj150.10 . . . . . . . 8 (𝜓″[𝐹 / 𝑓]𝜓′)
2118, 19, 20, 5bnj126 30943 . . . . . . 7 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
2217, 21mpbir 221 . . . . . 6 𝜓″
2316, 22jctir 561 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ((𝐹 Fn 1𝑜𝜑″) ∧ 𝜓″))
24 df-3an 1039 . . . . 5 ((𝐹 Fn 1𝑜𝜑″𝜓″) ↔ ((𝐹 Fn 1𝑜𝜑″) ∧ 𝜓″))
2523, 24sylibr 224 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1𝑜𝜑″𝜓″))
26 bnj150.11 . . . . 5 (𝜁″[𝐹 / 𝑓]𝜁′)
27 bnj150.3 . . . . . 6 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
28 bnj150.7 . . . . . 6 (𝜁′[1𝑜 / 𝑛]𝜁)
2927, 28, 12, 19bnj121 30940 . . . . 5 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)))
305, 13, 20, 26, 29bnj124 30941 . . . 4 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1𝑜𝜑″𝜓″)))
3125, 30mpbir 221 . . 3 𝜁″
325bnj95 30934 . . . 4 𝐹 ∈ V
33 sbceq1a 3446 . . . . 5 (𝑓 = 𝐹 → (𝜁′[𝐹 / 𝑓]𝜁′))
3433, 26syl6bbr 278 . . . 4 (𝑓 = 𝐹 → (𝜁′𝜁″))
3532, 34spcev 3300 . . 3 (𝜁″ → ∃𝑓𝜁′)
3631, 35ax-mp 5 . 2 𝑓𝜁′
37 bnj150.6 . . . 4 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
38 19.37v 1910 . . . 4 (∃𝑓((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1𝑜𝜑′𝜓′)))
3937, 38bitr4i 267 . . 3 (𝜃0 ↔ ∃𝑓((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)))
4039, 29bnj133 30793 . 2 (𝜃0 ↔ ∃𝑓𝜁′)
4136, 40mpbir 221 1 𝜃0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  [wsbc 3435  c0 3915  {csn 4177  cop 4183   ciun 4520  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  cfv 5888  ωcom 7065  1𝑜c1o 7553   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-1o 7560  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj151  30947
  Copyright terms: Public domain W3C validator