MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem4 Structured version   Visualization version   GIF version

Theorem 2lgslem4 25131
Description: Lemma 4 for 2lgs 25132: special case of 2lgs 25132 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.)
Assertion
Ref Expression
2lgslem4 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})

Proof of Theorem 2lgslem4
StepHypRef Expression
1 2lgs2 25130 . . 3 (2 /L 2) = 0
21eqeq1i 2627 . 2 ((2 /L 2) = 1 ↔ 0 = 1)
3 0ne1 11088 . . . 4 0 ≠ 1
43neii 2796 . . 3 ¬ 0 = 1
5 1ne2 11240 . . . . 5 1 ≠ 2
65nesymi 2851 . . . 4 ¬ 2 = 1
7 2re 11090 . . . . . 6 2 ∈ ℝ
8 2lt7 11213 . . . . . 6 2 < 7
97, 8ltneii 10150 . . . . 5 2 ≠ 7
109neii 2796 . . . 4 ¬ 2 = 7
116, 10pm3.2ni 899 . . 3 ¬ (2 = 1 ∨ 2 = 7)
124, 112false 365 . 2 (0 = 1 ↔ (2 = 1 ∨ 2 = 7))
13 8nn 11191 . . . . . 6 8 ∈ ℕ
14 nnrp 11842 . . . . . 6 (8 ∈ ℕ → 8 ∈ ℝ+)
1513, 14ax-mp 5 . . . . 5 8 ∈ ℝ+
16 0le2 11111 . . . . 5 0 ≤ 2
17 2lt8 11220 . . . . 5 2 < 8
18 modid 12695 . . . . 5 (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2)
197, 15, 16, 17, 18mp4an 709 . . . 4 (2 mod 8) = 2
2019eleq1i 2692 . . 3 ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7})
21 2ex 11092 . . . 4 2 ∈ V
2221elpr 4198 . . 3 (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7))
2320, 22bitr2i 265 . 2 ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7})
242, 12, 233bitri 286 1 ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7})
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383   = wceq 1483  wcel 1990  {cpr 4179   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   < clt 10074  cle 10075  cn 11020  2c2 11070  7c7 11075  8c8 11076  +crp 11832   mod cmo 12668   /L clgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-lgs 25020
This theorem is referenced by:  2lgs  25132
  Copyright terms: Public domain W3C validator