![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for 2lgs 25132: special case of 2lgs 25132 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
Ref | Expression |
---|---|
2lgslem4 | ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgs2 25130 | . . 3 ⊢ (2 /L 2) = 0 | |
2 | 1 | eqeq1i 2627 | . 2 ⊢ ((2 /L 2) = 1 ↔ 0 = 1) |
3 | 0ne1 11088 | . . . 4 ⊢ 0 ≠ 1 | |
4 | 3 | neii 2796 | . . 3 ⊢ ¬ 0 = 1 |
5 | 1ne2 11240 | . . . . 5 ⊢ 1 ≠ 2 | |
6 | 5 | nesymi 2851 | . . . 4 ⊢ ¬ 2 = 1 |
7 | 2re 11090 | . . . . . 6 ⊢ 2 ∈ ℝ | |
8 | 2lt7 11213 | . . . . . 6 ⊢ 2 < 7 | |
9 | 7, 8 | ltneii 10150 | . . . . 5 ⊢ 2 ≠ 7 |
10 | 9 | neii 2796 | . . . 4 ⊢ ¬ 2 = 7 |
11 | 6, 10 | pm3.2ni 899 | . . 3 ⊢ ¬ (2 = 1 ∨ 2 = 7) |
12 | 4, 11 | 2false 365 | . 2 ⊢ (0 = 1 ↔ (2 = 1 ∨ 2 = 7)) |
13 | 8nn 11191 | . . . . . 6 ⊢ 8 ∈ ℕ | |
14 | nnrp 11842 | . . . . . 6 ⊢ (8 ∈ ℕ → 8 ∈ ℝ+) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ 8 ∈ ℝ+ |
16 | 0le2 11111 | . . . . 5 ⊢ 0 ≤ 2 | |
17 | 2lt8 11220 | . . . . 5 ⊢ 2 < 8 | |
18 | modid 12695 | . . . . 5 ⊢ (((2 ∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 8)) → (2 mod 8) = 2) | |
19 | 7, 15, 16, 17, 18 | mp4an 709 | . . . 4 ⊢ (2 mod 8) = 2 |
20 | 19 | eleq1i 2692 | . . 3 ⊢ ((2 mod 8) ∈ {1, 7} ↔ 2 ∈ {1, 7}) |
21 | 2ex 11092 | . . . 4 ⊢ 2 ∈ V | |
22 | 21 | elpr 4198 | . . 3 ⊢ (2 ∈ {1, 7} ↔ (2 = 1 ∨ 2 = 7)) |
23 | 20, 22 | bitr2i 265 | . 2 ⊢ ((2 = 1 ∨ 2 = 7) ↔ (2 mod 8) ∈ {1, 7}) |
24 | 2, 12, 23 | 3bitri 286 | 1 ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 383 = wceq 1483 ∈ wcel 1990 {cpr 4179 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 < clt 10074 ≤ cle 10075 ℕcn 11020 2c2 11070 7c7 11075 8c8 11076 ℝ+crp 11832 mod cmo 12668 /L clgs 25019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-phi 15471 df-pc 15542 df-lgs 25020 |
This theorem is referenced by: 2lgs 25132 |
Copyright terms: Public domain | W3C validator |