Proof of Theorem 2mo
| Step | Hyp | Ref
| Expression |
| 1 | | 2mo2 2550 |
. . . 4
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 2 | | nfmo1 2481 |
. . . . . . 7
⊢
Ⅎ𝑥∃*𝑥∃𝑦𝜑 |
| 3 | | nfe1 2027 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑥𝜑 |
| 4 | 3 | nfmo 2487 |
. . . . . . 7
⊢
Ⅎ𝑥∃*𝑦∃𝑥𝜑 |
| 5 | 2, 4 | nfan 1828 |
. . . . . 6
⊢
Ⅎ𝑥(∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) |
| 6 | | nfe1 2027 |
. . . . . . . . 9
⊢
Ⅎ𝑦∃𝑦𝜑 |
| 7 | 6 | nfmo 2487 |
. . . . . . . 8
⊢
Ⅎ𝑦∃*𝑥∃𝑦𝜑 |
| 8 | | nfmo1 2481 |
. . . . . . . 8
⊢
Ⅎ𝑦∃*𝑦∃𝑥𝜑 |
| 9 | 7, 8 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑦(∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) |
| 10 | | 19.8a 2052 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑦𝜑) |
| 11 | | spsbe 1884 |
. . . . . . . . . 10
⊢ ([𝑤 / 𝑦]𝜑 → ∃𝑦𝜑) |
| 12 | 11 | sbimi 1886 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → [𝑧 / 𝑥]∃𝑦𝜑) |
| 13 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧∃𝑦𝜑 |
| 14 | 13 | mo3 2507 |
. . . . . . . . . . 11
⊢
(∃*𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑧((∃𝑦𝜑 ∧ [𝑧 / 𝑥]∃𝑦𝜑) → 𝑥 = 𝑧)) |
| 15 | 14 | biimpi 206 |
. . . . . . . . . 10
⊢
(∃*𝑥∃𝑦𝜑 → ∀𝑥∀𝑧((∃𝑦𝜑 ∧ [𝑧 / 𝑥]∃𝑦𝜑) → 𝑥 = 𝑧)) |
| 16 | 15 | 19.21bbi 2060 |
. . . . . . . . 9
⊢
(∃*𝑥∃𝑦𝜑 → ((∃𝑦𝜑 ∧ [𝑧 / 𝑥]∃𝑦𝜑) → 𝑥 = 𝑧)) |
| 17 | 10, 12, 16 | syl2ani 688 |
. . . . . . . 8
⊢
(∃*𝑥∃𝑦𝜑 → ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → 𝑥 = 𝑧)) |
| 18 | | 19.8a 2052 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑥𝜑) |
| 19 | | sbcom2 2445 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) |
| 20 | | spsbe 1884 |
. . . . . . . . . . 11
⊢ ([𝑧 / 𝑥]𝜑 → ∃𝑥𝜑) |
| 21 | 20 | sbimi 1886 |
. . . . . . . . . 10
⊢ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 → [𝑤 / 𝑦]∃𝑥𝜑) |
| 22 | 19, 21 | sylbi 207 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → [𝑤 / 𝑦]∃𝑥𝜑) |
| 23 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑤∃𝑥𝜑 |
| 24 | 23 | mo3 2507 |
. . . . . . . . . . 11
⊢
(∃*𝑦∃𝑥𝜑 ↔ ∀𝑦∀𝑤((∃𝑥𝜑 ∧ [𝑤 / 𝑦]∃𝑥𝜑) → 𝑦 = 𝑤)) |
| 25 | 24 | biimpi 206 |
. . . . . . . . . 10
⊢
(∃*𝑦∃𝑥𝜑 → ∀𝑦∀𝑤((∃𝑥𝜑 ∧ [𝑤 / 𝑦]∃𝑥𝜑) → 𝑦 = 𝑤)) |
| 26 | 25 | 19.21bbi 2060 |
. . . . . . . . 9
⊢
(∃*𝑦∃𝑥𝜑 → ((∃𝑥𝜑 ∧ [𝑤 / 𝑦]∃𝑥𝜑) → 𝑦 = 𝑤)) |
| 27 | 18, 22, 26 | syl2ani 688 |
. . . . . . . 8
⊢
(∃*𝑦∃𝑥𝜑 → ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → 𝑦 = 𝑤)) |
| 28 | 17, 27 | anim12ii 594 |
. . . . . . 7
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) → ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 29 | 9, 28 | alrimi 2082 |
. . . . . 6
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) → ∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 30 | 5, 29 | alrimi 2082 |
. . . . 5
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) → ∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 31 | 30 | alrimivv 1856 |
. . . 4
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) → ∀𝑧∀𝑤∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 32 | 1, 31 | sylbir 225 |
. . 3
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑧∀𝑤∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 33 | | nfs1v 2437 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 |
| 34 | | nfs1v 2437 |
. . . . . . . . . 10
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜑 |
| 35 | 34 | nfsb 2440 |
. . . . . . . . 9
⊢
Ⅎ𝑦[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 |
| 36 | | pm3.21 464 |
. . . . . . . . . 10
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (𝜑 → (𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))) |
| 37 | 36 | imim1d 82 |
. . . . . . . . 9
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 38 | 35, 37 | alimd 2081 |
. . . . . . . 8
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 39 | 33, 38 | alimd 2081 |
. . . . . . 7
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 40 | 39 | com12 32 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 41 | 40 | aleximi 1759 |
. . . . 5
⊢
(∀𝑤∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 42 | 41 | aleximi 1759 |
. . . 4
⊢
(∀𝑧∀𝑤∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → (∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| 43 | | 2nexaln 1757 |
. . . . . 6
⊢ (¬
∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
| 44 | | 2sb8e 2467 |
. . . . . 6
⊢
(∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) |
| 45 | 43, 44 | xchnxbi 322 |
. . . . 5
⊢ (¬
∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
| 46 | | pm2.21 120 |
. . . . . . . . 9
⊢ (¬
𝜑 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 47 | 46 | 2alimi 1740 |
. . . . . . . 8
⊢
(∀𝑥∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 48 | 47 | 2eximi 1763 |
. . . . . . 7
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦 ¬ 𝜑 → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 49 | 48 | 19.23bi 2061 |
. . . . . 6
⊢
(∃𝑤∀𝑥∀𝑦 ¬ 𝜑 → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 50 | 49 | 19.23bi 2061 |
. . . . 5
⊢
(∀𝑥∀𝑦 ¬ 𝜑 → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 51 | 45, 50 | sylbi 207 |
. . . 4
⊢ (¬
∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 52 | 42, 51 | pm2.61d1 171 |
. . 3
⊢
(∀𝑧∀𝑤∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) → ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 53 | 32, 52 | impbii 199 |
. 2
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 54 | | alrot4 2039 |
. 2
⊢
(∀𝑧∀𝑤∀𝑥∀𝑦((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 55 | 53, 54 | bitri 264 |
1
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |