| Step | Hyp | Ref
| Expression |
| 1 | | nfmo1 2481 |
. . 3
⊢
Ⅎ𝑥∃*𝑥𝜑 |
| 2 | | mo3.1 |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
| 3 | 2 | nfmo 2487 |
. . . 4
⊢
Ⅎ𝑦∃*𝑥𝜑 |
| 4 | | mo2v 2477 |
. . . . 5
⊢
(∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) |
| 5 | | sp 2053 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) |
| 6 | | spsbim 2394 |
. . . . . . . . 9
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝑥 = 𝑧)) |
| 7 | | equsb3 2432 |
. . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) |
| 8 | 6, 7 | syl6ib 241 |
. . . . . . . 8
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ([𝑦 / 𝑥]𝜑 → 𝑦 = 𝑧)) |
| 9 | 5, 8 | anim12d 586 |
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑧))) |
| 10 | | equtr2 1954 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) |
| 11 | 9, 10 | syl6 35 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 12 | 11 | exlimiv 1858 |
. . . . 5
⊢
(∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 13 | 4, 12 | sylbi 207 |
. . . 4
⊢
(∃*𝑥𝜑 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 14 | 3, 13 | alrimi 2082 |
. . 3
⊢
(∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 15 | 1, 14 | alrimi 2082 |
. 2
⊢
(∃*𝑥𝜑 → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 16 | | nfs1v 2437 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| 17 | | pm3.21 464 |
. . . . . . . . 9
⊢ ([𝑦 / 𝑥]𝜑 → (𝜑 → (𝜑 ∧ [𝑦 / 𝑥]𝜑))) |
| 18 | 17 | imim1d 82 |
. . . . . . . 8
⊢ ([𝑦 / 𝑥]𝜑 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦))) |
| 19 | 16, 18 | alimd 2081 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 20 | 19 | com12 32 |
. . . . . 6
⊢
(∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 21 | 20 | aleximi 1759 |
. . . . 5
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 22 | 2 | sb8e 2425 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 23 | 2 | mo2 2479 |
. . . . 5
⊢
(∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 24 | 21, 22, 23 | 3imtr4g 285 |
. . . 4
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃*𝑥𝜑)) |
| 25 | | moabs 2501 |
. . . 4
⊢
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
| 26 | 24, 25 | sylibr 224 |
. . 3
⊢
(∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| 27 | 26 | alcoms 2035 |
. 2
⊢
(∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| 28 | 15, 27 | impbii 199 |
1
⊢
(∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |