| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sb5 | Structured version Visualization version GIF version | ||
| Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| 2sb5 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5 2430 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑)) | |
| 2 | 19.42v 1918 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ 𝜑)) ↔ (𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤 ∧ 𝜑))) | |
| 3 | anass 681 | . . . . 5 ⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑) ↔ (𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ 𝜑))) | |
| 4 | 3 | exbii 1774 | . . . 4 ⊢ (∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝑧 ∧ (𝑦 = 𝑤 ∧ 𝜑))) |
| 5 | sb5 2430 | . . . . 5 ⊢ ([𝑤 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝑤 ∧ 𝜑)) | |
| 6 | 5 | anbi2i 730 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 ∧ ∃𝑦(𝑦 = 𝑤 ∧ 𝜑))) |
| 7 | 2, 4, 6 | 3bitr4ri 293 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
| 8 | 7 | exbii 1774 | . 2 ⊢ (∃𝑥(𝑥 = 𝑧 ∧ [𝑤 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
| 9 | 1, 8 | bitri 264 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: opelopabsbALT 4984 |
| Copyright terms: Public domain | W3C validator |