MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sb6 Structured version   Visualization version   GIF version

Theorem 2sb6 2444
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2sb6 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 2sb6
StepHypRef Expression
1 sb6 2429 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑))
2 19.21v 1868 . . . 4 (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)))
3 impexp 462 . . . . 5 (((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)))
43albii 1747 . . . 4 (∀𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤𝜑)))
5 sb6 2429 . . . . 5 ([𝑤 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑤𝜑))
65imbi2i 326 . . . 4 ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤𝜑)))
72, 4, 63bitr4ri 293 . . 3 ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
87albii 1747 . 2 (∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
91, 8bitri 264 1 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  sbcom2  2445  2exsb  2469  2eu6  2558
  Copyright terms: Public domain W3C validator