![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sb6 | Structured version Visualization version GIF version |
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2sb6 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2429 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑)) | |
2 | 19.21v 1868 | . . . 4 ⊢ (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) | |
3 | impexp 462 | . . . . 5 ⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | |
4 | 3 | albii 1747 | . . . 4 ⊢ (∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) |
5 | sb6 2429 | . . . . 5 ⊢ ([𝑤 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑤 → 𝜑)) | |
6 | 5 | imbi2i 326 | . . . 4 ⊢ ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) |
7 | 2, 4, 6 | 3bitr4ri 293 | . . 3 ⊢ ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
8 | 7 | albii 1747 | . 2 ⊢ (∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
9 | 1, 8 | bitri 264 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 [wsb 1880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
This theorem is referenced by: sbcom2 2445 2exsb 2469 2eu6 2558 |
Copyright terms: Public domain | W3C validator |