MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabsbALT Structured version   Visualization version   GIF version

Theorem opelopabsbALT 4984
Description: The law of concretion in terms of substitutions. Less general than opelopabsb 4985, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
opelopabsbALT (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem opelopabsbALT
StepHypRef Expression
1 excom 2042 . . 3 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 vex 3203 . . . . . . 7 𝑧 ∈ V
3 vex 3203 . . . . . . 7 𝑤 ∈ V
42, 3opth 4945 . . . . . 6 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = 𝑥𝑤 = 𝑦))
5 equcom 1945 . . . . . . 7 (𝑧 = 𝑥𝑥 = 𝑧)
6 equcom 1945 . . . . . . 7 (𝑤 = 𝑦𝑦 = 𝑤)
75, 6anbi12ci 734 . . . . . 6 ((𝑧 = 𝑥𝑤 = 𝑦) ↔ (𝑦 = 𝑤𝑥 = 𝑧))
84, 7bitri 264 . . . . 5 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = 𝑤𝑥 = 𝑧))
98anbi1i 731 . . . 4 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1092exbii 1775 . . 3 (∃𝑦𝑥(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
111, 10bitri 264 . 2 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
12 elopab 4983 . 2 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
13 2sb5 2443 . 2 ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝑥((𝑦 = 𝑤𝑥 = 𝑧) ∧ 𝜑))
1411, 12, 133bitr4i 292 1 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  [wsb 1880  wcel 1990  cop 4183  {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713
This theorem is referenced by:  inopab  5252  cnvopab  5533  brabsb2  34147
  Copyright terms: Public domain W3C validator