| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1256 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) |
| Ref | Expression |
|---|---|
| 3imp21.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp21.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | 3imp 1256 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| 3 | 2 | 3com12 1269 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: sotri3 5526 elfz1b 12409 gausslemma2dlem1a 25090 upgrewlkle2 26502 pthdivtx 26625 clwwlkinwwlk 26905 clwlksfclwwlk 26962 upgr3v3e3cycl 27040 upgr4cycl4dv4e 27045 frgrregord013 27253 ax6e2ndeqALT 39167 fmtnofac2 41481 |
| Copyright terms: Public domain | W3C validator |