Step | Hyp | Ref
| Expression |
1 | | eqid 2622 |
. . 3
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | eqid 2622 |
. . 3
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
3 | 1, 2 | wwlknp 26734 |
. 2
⊢ (𝑊 ∈ (𝑀 WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
4 | | swrdcl 13419 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺)) |
5 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) → (𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺)) |
6 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺)) |
7 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑊 ∈ Word (Vtx‘𝐺)) |
8 | | simprl 794 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ ℕ) |
9 | | eluz2 11693 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈
(ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) |
10 | | zre 11381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
11 | | zre 11381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
12 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ≤ 𝑀 → 𝑁 ≤ 𝑀) |
13 | 10, 11, 12 | 3anim123i 1247 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀)) |
14 | 9, 13 | sylbi 207 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀)) |
15 | | letrp1 10865 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀) → 𝑁 ≤ (𝑀 + 1)) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ (𝑀 + 1)) |
17 | 16 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑁 ≤ (𝑀 + 1)) |
18 | 17 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ≤ (𝑀 + 1)) |
19 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢
((#‘𝑊) =
(𝑀 + 1) → (𝑁 ≤ (#‘𝑊) ↔ 𝑁 ≤ (𝑀 + 1))) |
20 | 19 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑁 ≤ (#‘𝑊) ↔ 𝑁 ≤ (𝑀 + 1))) |
21 | 18, 20 | mpbird 247 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ≤ (#‘𝑊)) |
22 | | swrdn0 13430 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (#‘𝑊)) → (𝑊 substr 〈0, 𝑁〉) ≠ ∅) |
23 | 7, 8, 21, 22 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑊 substr 〈0, 𝑁〉) ≠ ∅) |
24 | 6, 23 | jca 554 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → ((𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr 〈0, 𝑁〉) ≠ ∅)) |
25 | 24 | 3adantl3 1219 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → ((𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr 〈0, 𝑁〉) ≠ ∅)) |
26 | 25 | adantr 481 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → ((𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr 〈0, 𝑁〉) ≠ ∅)) |
27 | | nnz 11399 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
28 | | 1nn0 11308 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ0 |
29 | | eluzmn 11694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 1 ∈
ℕ0) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
30 | 27, 28, 29 | sylancl 694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘(𝑁 − 1))) |
31 | | uzss 11708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) →
(ℤ≥‘𝑁) ⊆
(ℤ≥‘(𝑁 − 1))) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ →
(ℤ≥‘𝑁) ⊆
(ℤ≥‘(𝑁 − 1))) |
33 | 32 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘(𝑁 − 1))) |
34 | | fzoss2 12496 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈
(ℤ≥‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀)) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀)) |
36 | 35 | 3ad2ant3 1084 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀)) |
37 | | ssralv 3666 |
. . . . . . . . . . . . 13
⊢
((0..^(𝑁 − 1))
⊆ (0..^𝑀) →
(∀𝑖 ∈
(0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
39 | 38 | 3exp 1264 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) |
40 | 39 | com34 91 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → (∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))))) |
41 | 40 | 3imp1 1280 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
42 | 41 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
43 | | nnnn0 11299 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
44 | | elnn0uz 11725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈
(ℤ≥‘0)) |
45 | 43, 44 | sylib 208 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘0)) |
46 | | eluzfz 12337 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (0...𝑀)) |
47 | 45, 46 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑁 ∈ (0...𝑀)) |
48 | | fzelp1 12393 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ (0...𝑀) → 𝑁 ∈ (0...(𝑀 + 1))) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑁 ∈ (0...(𝑀 + 1))) |
50 | 49 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (0...(𝑀 + 1))) |
51 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝑊) =
(𝑀 + 1) →
(0...(#‘𝑊)) =
(0...(𝑀 +
1))) |
52 | 51 | eleq2d 2687 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝑊) =
(𝑀 + 1) → (𝑁 ∈ (0...(#‘𝑊)) ↔ 𝑁 ∈ (0...(𝑀 + 1)))) |
53 | 52 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑁 ∈ (0...(#‘𝑊)) ↔ 𝑁 ∈ (0...(𝑀 + 1)))) |
54 | 50, 53 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (0...(#‘𝑊))) |
55 | | swrd0len 13422 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr 〈0, 𝑁〉)) = 𝑁) |
56 | 7, 54, 55 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (#‘(𝑊 substr 〈0, 𝑁〉)) = 𝑁) |
57 | 56 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → ((#‘(𝑊 substr 〈0, 𝑁〉)) − 1) = (𝑁 − 1)) |
58 | 57 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)) =
(0..^(𝑁 −
1))) |
59 | 58 | raleqdv 3144 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
60 | 7 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑊 ∈ Word (Vtx‘𝐺)) |
61 | 54 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...(#‘𝑊))) |
62 | 30 | ad2antrl 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
63 | | fzoss2 12496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
65 | 64 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁)) |
66 | | swrd0fv 13439 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr 〈0, 𝑁〉)‘𝑖) = (𝑊‘𝑖)) |
67 | 60, 61, 65, 66 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑊 substr 〈0, 𝑁〉)‘𝑖) = (𝑊‘𝑖)) |
68 | 27 | ad2antrl 764 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ ℤ) |
69 | | elfzom1elp1fzo 12534 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) |
70 | 68, 69 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁)) |
71 | | swrd0fv 13439 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) → ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1))) |
72 | 60, 61, 70, 71 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1))) |
73 | 67, 72 | preq12d 4276 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} = {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))}) |
74 | 73 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
75 | 74 | ralbidva 2985 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
76 | 59, 75 | bitrd 268 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
77 | 76 | 3adantl3 1219 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
78 | 77 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
79 | 42, 78 | mpbird 247 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
80 | | elfz1uz 12410 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑁 ∈ (1...𝑀)) |
81 | | fzelp1 12393 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (1...(𝑀 + 1))) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑁 ∈ (1...(𝑀 + 1))) |
83 | 82 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (1...(𝑀 + 1))) |
84 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢
((#‘𝑊) =
(𝑀 + 1) →
(1...(#‘𝑊)) =
(1...(𝑀 +
1))) |
85 | 84 | eleq2d 2687 |
. . . . . . . . . . . . 13
⊢
((#‘𝑊) =
(𝑀 + 1) → (𝑁 ∈ (1...(#‘𝑊)) ↔ 𝑁 ∈ (1...(𝑀 + 1)))) |
86 | 85 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑁 ∈ (1...(#‘𝑊)) ↔ 𝑁 ∈ (1...(𝑀 + 1)))) |
87 | 83, 86 | mpbird 247 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (1...(#‘𝑊))) |
88 | | swrd0fvlsw 13443 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(#‘𝑊))) → ( lastS ‘(𝑊 substr 〈0, 𝑁〉)) = (𝑊‘(𝑁 − 1))) |
89 | | swrd0fv0 13440 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(#‘𝑊))) → ((𝑊 substr 〈0, 𝑁〉)‘0) = (𝑊‘0)) |
90 | 88, 89 | preq12d 4276 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(#‘𝑊))) → {( lastS ‘(𝑊 substr 〈0, 𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}) |
91 | 7, 87, 90 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → {( lastS
‘(𝑊 substr 〈0,
𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}) |
92 | 91 | 3adantl3 1219 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → {( lastS
‘(𝑊 substr 〈0,
𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}) |
93 | 92 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → {( lastS ‘(𝑊 substr 〈0, 𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}) |
94 | | fz1fzo0m1 12515 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ (1...𝑀) → (𝑁 − 1) ∈ (0..^𝑀)) |
95 | 80, 94 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → (𝑁 − 1) ∈ (0..^𝑀)) |
96 | 95 | 3ad2ant3 1084 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑁 − 1) ∈ (0..^𝑀)) |
97 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → 𝑖 = (𝑁 − 1)) |
98 | 97 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘𝑖) = (𝑊‘(𝑁 − 1))) |
99 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = (𝑁 − 1) → (𝑖 + 1) = ((𝑁 − 1) + 1)) |
100 | | nncn 11028 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
101 | | npcan1 10455 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
103 | 99, 102 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑖 + 1) = 𝑁) |
104 | 103 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊‘𝑁)) |
105 | 98, 104 | preq12d 4276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)}) |
106 | 105 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))) |
107 | 106 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → (𝑖 = (𝑁 − 1) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺)))) |
108 | 107 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → (𝑖 = (𝑁 − 1) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺)))) |
109 | 108 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑖 = (𝑁 − 1) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺)))) |
110 | 109 | imp 445 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))) |
111 | 96, 110 | rspcdv 3312 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))) |
112 | 111 | 3exp 1264 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))))) |
113 | 112 | com34 91 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → (∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺))))) |
114 | 113 | 3imp1 1280 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺)) |
115 | 114 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺)) |
116 | | preq2 4269 |
. . . . . . . . . . 11
⊢ ((𝑊‘𝑁) = (𝑊‘0) → {(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}) |
117 | 116 | eleq1d 2686 |
. . . . . . . . . 10
⊢ ((𝑊‘𝑁) = (𝑊‘0) → ({(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))) |
118 | 117 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → ({(𝑊‘(𝑁 − 1)), (𝑊‘𝑁)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))) |
119 | 115, 118 | mpbid 222 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)) |
120 | 93, 119 | eqeltrd 2701 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → {( lastS ‘(𝑊 substr 〈0, 𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} ∈ (Edg‘𝐺)) |
121 | 26, 79, 120 | 3jca 1242 |
. . . . . 6
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (((𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr 〈0, 𝑁〉) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr 〈0, 𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} ∈ (Edg‘𝐺))) |
122 | 121 | exp31 630 |
. . . . 5
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((𝑊‘𝑁) = (𝑊‘0) → (((𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr 〈0, 𝑁〉) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr 〈0, 𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} ∈ (Edg‘𝐺))))) |
123 | 122 | 3imp21 1277 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (((𝑊 substr 〈0, 𝑁〉) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr 〈0, 𝑁〉) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr 〈0, 𝑁〉)) − 1)){((𝑊 substr 〈0, 𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr 〈0, 𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} ∈ (Edg‘𝐺))) |
124 | 1, 2 | isclwwlks 26880 |
. . . 4
⊢ ((𝑊 substr 〈0, 𝑁〉) ∈
(ClWWalks‘𝐺) ↔
(((𝑊 substr 〈0, 𝑁〉) ∈ Word
(Vtx‘𝐺) ∧ (𝑊 substr 〈0, 𝑁〉) ≠ ∅) ∧
∀𝑖 ∈
(0..^((#‘(𝑊 substr
〈0, 𝑁〉)) −
1)){((𝑊 substr 〈0,
𝑁〉)‘𝑖), ((𝑊 substr 〈0, 𝑁〉)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr 〈0, 𝑁〉)), ((𝑊 substr 〈0, 𝑁〉)‘0)} ∈ (Edg‘𝐺))) |
125 | 123, 124 | sylibr 224 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (𝑊 substr 〈0, 𝑁〉) ∈ (ClWWalks‘𝐺)) |
126 | 47 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (0...𝑀)) |
127 | 126, 48 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (0...(𝑀 + 1))) |
128 | 127, 53 | mpbird 247 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → 𝑁 ∈ (0...(#‘𝑊))) |
129 | 7, 128 | jca 554 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)))) |
130 | 129 | ex 450 |
. . . . . . 7
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊))))) |
131 | 130 | 3adant3 1081 |
. . . . . 6
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊))))) |
132 | 131 | impcom 446 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)))) |
133 | 132 | 3adant3 1081 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)))) |
134 | 133, 55 | syl 17 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (#‘(𝑊 substr 〈0, 𝑁〉)) = 𝑁) |
135 | | isclwwlksn 26882 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑊 substr 〈0, 𝑁〉) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 substr 〈0, 𝑁〉) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝑊 substr 〈0, 𝑁〉)) = 𝑁))) |
136 | 135 | adantr 481 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → ((𝑊 substr 〈0, 𝑁〉) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 substr 〈0, 𝑁〉) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝑊 substr 〈0, 𝑁〉)) = 𝑁))) |
137 | 136 | 3ad2ant1 1082 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊‘𝑁) = (𝑊‘0)) → ((𝑊 substr 〈0, 𝑁〉) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 substr 〈0, 𝑁〉) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝑊 substr 〈0, 𝑁〉)) = 𝑁))) |
138 | 125, 134,
137 | mpbir2and 957 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (𝑊 substr 〈0, 𝑁〉) ∈ (𝑁 ClWWalksN 𝐺)) |
139 | 3, 138 | syl3an2 1360 |
1
⊢ (((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) ∧ 𝑊 ∈ (𝑀 WWalksN 𝐺) ∧ (𝑊‘𝑁) = (𝑊‘0)) → (𝑊 substr 〈0, 𝑁〉) ∈ (𝑁 ClWWalksN 𝐺)) |