MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkinwwlk Structured version   Visualization version   GIF version

Theorem clwwlkinwwlk 26905
Description: If the initial vertex of a walk occurs another time in the walk, the walk starts with a closed walk. Since the walk is expressed as a word over vertices, the closed walk can be expressed as a subword of this word. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 23-Jan-2022.)
Assertion
Ref Expression
clwwlkinwwlk (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ 𝑊 ∈ (𝑀 WWalksN 𝐺) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 substr ⟨0, 𝑁⟩) ∈ (𝑁 ClWWalksN 𝐺))

Proof of Theorem clwwlkinwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2622 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2wwlknp 26734 . 2 (𝑊 ∈ (𝑀 WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 swrdcl 13419 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺))
54adantr 481 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) → (𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺))
65adantr 481 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺))
7 simpll 790 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑊 ∈ Word (Vtx‘𝐺))
8 simprl 794 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ ℕ)
9 eluz2 11693 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
10 zre 11381 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
11 zre 11381 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
12 id 22 . . . . . . . . . . . . . . . . 17 (𝑁𝑀𝑁𝑀)
1310, 11, 123anim123i 1247 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁𝑀))
149, 13sylbi 207 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁𝑀))
15 letrp1 10865 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁𝑀) → 𝑁 ≤ (𝑀 + 1))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ𝑁) → 𝑁 ≤ (𝑀 + 1))
1716adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ≤ (𝑀 + 1))
1817adantl 482 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ≤ (𝑀 + 1))
19 breq2 4657 . . . . . . . . . . . . 13 ((#‘𝑊) = (𝑀 + 1) → (𝑁 ≤ (#‘𝑊) ↔ 𝑁 ≤ (𝑀 + 1)))
2019ad2antlr 763 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 ≤ (#‘𝑊) ↔ 𝑁 ≤ (𝑀 + 1)))
2118, 20mpbird 247 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ≤ (#‘𝑊))
22 swrdn0 13430 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (#‘𝑊)) → (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅)
237, 8, 21, 22syl3anc 1326 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅)
246, 23jca 554 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ((𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅))
25243adantl3 1219 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ((𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅))
2625adantr 481 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ((𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅))
27 nnz 11399 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 1nn0 11308 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
29 eluzmn 11694 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
3027, 28, 29sylancl 694 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
31 uzss 11708 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (ℤ𝑁) ⊆ (ℤ‘(𝑁 − 1)))
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (ℤ𝑁) ⊆ (ℤ‘(𝑁 − 1)))
3332sselda 3603 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ‘(𝑁 − 1)))
34 fzoss2 12496 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀))
3533, 34syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀))
36353ad2ant3 1084 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀))
37 ssralv 3666 . . . . . . . . . . . . 13 ((0..^(𝑁 − 1)) ⊆ (0..^𝑀) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
3836, 37syl 17 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
39383exp 1264 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
4039com34 91 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
41403imp1 1280 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))
4241adantr 481 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))
43 nnnn0 11299 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
44 elnn0uz 11725 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
4543, 44sylib 208 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
46 eluzfz 12337 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘0) ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (0...𝑀))
4745, 46sylan 488 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (0...𝑀))
48 fzelp1 12393 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (0...𝑀) → 𝑁 ∈ (0...(𝑀 + 1)))
4947, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (0...(𝑀 + 1)))
5049adantl 482 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(𝑀 + 1)))
51 oveq2 6658 . . . . . . . . . . . . . . . . . 18 ((#‘𝑊) = (𝑀 + 1) → (0...(#‘𝑊)) = (0...(𝑀 + 1)))
5251eleq2d 2687 . . . . . . . . . . . . . . . . 17 ((#‘𝑊) = (𝑀 + 1) → (𝑁 ∈ (0...(#‘𝑊)) ↔ 𝑁 ∈ (0...(𝑀 + 1))))
5352ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 ∈ (0...(#‘𝑊)) ↔ 𝑁 ∈ (0...(𝑀 + 1))))
5450, 53mpbird 247 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(#‘𝑊)))
55 swrd0len 13422 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨0, 𝑁⟩)) = 𝑁)
567, 54, 55syl2anc 693 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (#‘(𝑊 substr ⟨0, 𝑁⟩)) = 𝑁)
5756oveq1d 6665 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1) = (𝑁 − 1))
5857oveq2d 6666 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)) = (0..^(𝑁 − 1)))
5958raleqdv 3144 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
607adantr 481 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
6154adantr 481 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...(#‘𝑊)))
6230ad2antrl 764 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
63 fzoss2 12496 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6564sselda 3603 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁))
66 swrd0fv 13439 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, 𝑁⟩)‘𝑖) = (𝑊𝑖))
6760, 61, 65, 66syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑊 substr ⟨0, 𝑁⟩)‘𝑖) = (𝑊𝑖))
6827ad2antrl 764 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ ℤ)
69 elfzom1elp1fzo 12534 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
7068, 69sylan 488 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
71 swrd0fv 13439 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) → ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7260, 61, 70, 71syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7367, 72preq12d 4276 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
7473eleq1d 2686 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7574ralbidva 2985 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7659, 75bitrd 268 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
77763adantl3 1219 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7877adantr 481 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → (∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7942, 78mpbird 247 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
80 elfz1uz 12410 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (1...𝑀))
81 fzelp1 12393 . . . . . . . . . . . . . 14 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (1...(𝑀 + 1)))
8280, 81syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (1...(𝑀 + 1)))
8382adantl 482 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (1...(𝑀 + 1)))
84 oveq2 6658 . . . . . . . . . . . . . 14 ((#‘𝑊) = (𝑀 + 1) → (1...(#‘𝑊)) = (1...(𝑀 + 1)))
8584eleq2d 2687 . . . . . . . . . . . . 13 ((#‘𝑊) = (𝑀 + 1) → (𝑁 ∈ (1...(#‘𝑊)) ↔ 𝑁 ∈ (1...(𝑀 + 1))))
8685ad2antlr 763 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 ∈ (1...(#‘𝑊)) ↔ 𝑁 ∈ (1...(𝑀 + 1))))
8783, 86mpbird 247 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (1...(#‘𝑊)))
88 swrd0fvlsw 13443 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(#‘𝑊))) → ( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)) = (𝑊‘(𝑁 − 1)))
89 swrd0fv0 13440 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(#‘𝑊))) → ((𝑊 substr ⟨0, 𝑁⟩)‘0) = (𝑊‘0))
9088, 89preq12d 4276 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(#‘𝑊))) → {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
917, 87, 90syl2anc 693 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
92913adantl3 1219 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
9392adantr 481 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
94 fz1fzo0m1 12515 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1...𝑀) → (𝑁 − 1) ∈ (0..^𝑀))
9580, 94syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑁 − 1) ∈ (0..^𝑀))
96953ad2ant3 1084 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 − 1) ∈ (0..^𝑀))
97 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → 𝑖 = (𝑁 − 1))
9897fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
99 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑁 − 1) → (𝑖 + 1) = ((𝑁 − 1) + 1))
100 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
101 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
10399, 102sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑖 + 1) = 𝑁)
104103fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊𝑁))
10598, 104preq12d 4276 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
106105eleq1d 2686 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
107106ex 450 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑖 = (𝑁 − 1) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
108107adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑖 = (𝑁 − 1) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
1091083ad2ant3 1084 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑖 = (𝑁 − 1) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
110109imp 445 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
11196, 110rspcdv 3312 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
1121113exp 1264 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
113112com34 91 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = (𝑀 + 1) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
1141133imp1 1280 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
115114adantr 481 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
116 preq2 4269 . . . . . . . . . . 11 ((𝑊𝑁) = (𝑊‘0) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
117116eleq1d 2686 . . . . . . . . . 10 ((𝑊𝑁) = (𝑊‘0) → ({(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
118117adantl 482 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ({(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
119115, 118mpbid 222 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
12093, 119eqeltrd 2701 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} ∈ (Edg‘𝐺))
12126, 79, 1203jca 1242 . . . . . 6 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → (((𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} ∈ (Edg‘𝐺)))
122121exp31 630 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → ((𝑊𝑁) = (𝑊‘0) → (((𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} ∈ (Edg‘𝐺)))))
1231223imp21 1277 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (((𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} ∈ (Edg‘𝐺)))
1241, 2isclwwlks 26880 . . . 4 ((𝑊 substr ⟨0, 𝑁⟩) ∈ (ClWWalks‘𝐺) ↔ (((𝑊 substr ⟨0, 𝑁⟩) ∈ Word (Vtx‘𝐺) ∧ (𝑊 substr ⟨0, 𝑁⟩) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝑊 substr ⟨0, 𝑁⟩)) − 1)){((𝑊 substr ⟨0, 𝑁⟩)‘𝑖), ((𝑊 substr ⟨0, 𝑁⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝑊 substr ⟨0, 𝑁⟩)), ((𝑊 substr ⟨0, 𝑁⟩)‘0)} ∈ (Edg‘𝐺)))
125123, 124sylibr 224 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 substr ⟨0, 𝑁⟩) ∈ (ClWWalks‘𝐺))
12647adantl 482 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...𝑀))
127126, 48syl 17 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(𝑀 + 1)))
128127, 53mpbird 247 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(#‘𝑊)))
1297, 128jca 554 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊))))
130129ex 450 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)))))
1311303adant3 1081 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊)))))
132131impcom 446 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊))))
1331323adant3 1081 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(#‘𝑊))))
134133, 55syl 17 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (#‘(𝑊 substr ⟨0, 𝑁⟩)) = 𝑁)
135 isclwwlksn 26882 . . . . 5 (𝑁 ∈ ℕ → ((𝑊 substr ⟨0, 𝑁⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 substr ⟨0, 𝑁⟩) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝑊 substr ⟨0, 𝑁⟩)) = 𝑁)))
136135adantr 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → ((𝑊 substr ⟨0, 𝑁⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 substr ⟨0, 𝑁⟩) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝑊 substr ⟨0, 𝑁⟩)) = 𝑁)))
1371363ad2ant1 1082 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → ((𝑊 substr ⟨0, 𝑁⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 substr ⟨0, 𝑁⟩) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝑊 substr ⟨0, 𝑁⟩)) = 𝑁)))
138125, 134, 137mpbir2and 957 . 2 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 substr ⟨0, 𝑁⟩) ∈ (𝑁 ClWWalksN 𝐺))
1393, 138syl3an2 1360 1 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ 𝑊 ∈ (𝑀 WWalksN 𝐺) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 substr ⟨0, 𝑁⟩) ∈ (𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915  {cpr 4179  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718  ClWWalkscclwwlks 26875   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  extwwlkfablem2  27210
  Copyright terms: Public domain W3C validator