Proof of Theorem pthdivtx
| Step | Hyp | Ref
| Expression |
| 1 | | ispth 26619 |
. . 3
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)) |
| 2 | | trliswlk 26594 |
. . . . 5
⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 3 | | eqid 2622 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 4 | 3 | wlkp 26512 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) |
| 5 | | elfz0lmr 12583 |
. . . . . . . . 9
⊢ (𝐽 ∈ (0...(#‘𝐹)) → (𝐽 = 0 ∨ 𝐽 ∈ (1..^(#‘𝐹)) ∨ 𝐽 = (#‘𝐹))) |
| 6 | | elfzo1 12517 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐼 ∈ (1..^(#‘𝐹)) ↔ (𝐼 ∈ ℕ ∧ (#‘𝐹) ∈ ℕ ∧ 𝐼 < (#‘𝐹))) |
| 7 | | nnnn0 11299 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((#‘𝐹) ∈
ℕ → (#‘𝐹)
∈ ℕ0) |
| 8 | 7 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ ℕ ∧
(#‘𝐹) ∈ ℕ
∧ 𝐼 < (#‘𝐹)) → (#‘𝐹) ∈
ℕ0) |
| 9 | 6, 8 | sylbi 207 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → (#‘𝐹) ∈
ℕ0) |
| 10 | 9 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (#‘𝐹) ∈
ℕ0) |
| 11 | | fvinim0ffz 12587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (#‘𝐹) ∈ ℕ0) →
(((𝑃 “ {0,
(#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))))) |
| 12 | 10, 11 | sylan2 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))))) |
| 13 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐽 = 0 → (𝑃‘𝐽) = (𝑃‘0)) |
| 14 | 13 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 = 0 → ((𝑃‘𝐼) = (𝑃‘𝐽) ↔ (𝑃‘𝐼) = (𝑃‘0))) |
| 15 | 14 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) ↔ (𝑃‘𝐼) = (𝑃‘0))) |
| 16 | | ffun 6048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃) |
| 17 | 16 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → Fun 𝑃) |
| 18 | | fdm 6051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(#‘𝐹))) |
| 19 | | fzo0ss1 12498 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(1..^(#‘𝐹))
⊆ (0..^(#‘𝐹)) |
| 20 | | fzossfz 12488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(0..^(#‘𝐹))
⊆ (0...(#‘𝐹)) |
| 21 | 19, 20 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(1..^(#‘𝐹))
⊆ (0...(#‘𝐹)) |
| 22 | 21 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ (0...(#‘𝐹))) |
| 23 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (dom
𝑃 = (0...(#‘𝐹)) → (𝐼 ∈ dom 𝑃 ↔ 𝐼 ∈ (0...(#‘𝐹)))) |
| 24 | 22, 23 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (dom
𝑃 = (0...(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ dom 𝑃)) |
| 25 | 18, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (𝐼 ∈ (1..^(#‘𝐹)) → 𝐼 ∈ dom 𝑃)) |
| 26 | 25 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → 𝐼 ∈ dom 𝑃) |
| 27 | 17, 26 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (Fun 𝑃 ∧ 𝐼 ∈ dom 𝑃)) |
| 28 | 27 | adantrl 752 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (Fun 𝑃 ∧ 𝐼 ∈ dom 𝑃)) |
| 29 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → 𝐼 ∈ (1..^(#‘𝐹))) |
| 30 | | funfvima 6492 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Fun
𝑃 ∧ 𝐼 ∈ dom 𝑃) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝑃‘𝐼) ∈ (𝑃 “ (1..^(#‘𝐹))))) |
| 31 | 28, 29, 30 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃‘𝐼) ∈ (𝑃 “ (1..^(#‘𝐹)))) |
| 32 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃‘𝐼) = (𝑃‘0) → ((𝑃‘𝐼) ∈ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹))))) |
| 33 | 31, 32 | syl5ibcom 235 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘0) → (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹))))) |
| 34 | 15, 33 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) → (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹))))) |
| 35 | | nnel 2906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(#‘𝐹)))) |
| 36 | 34, 35 | syl6ibr 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) → ¬ (𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))))) |
| 37 | 36 | necon2ad 2809 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 38 | 37 | adantrd 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 39 | 12, 38 | sylbid 230 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 40 | 39 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 41 | 40 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 42 | 41 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 43 | 42 | 3imp 1256 |
. . . . . . . . . . . . 13
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 44 | 43 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 45 | 44 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 46 | 45 | ex 450 |
. . . . . . . . . 10
⊢ (𝐽 = 0 → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 47 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ (1..^(#‘𝐹)) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = (𝑃‘𝐼)) |
| 48 | 47 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = (𝑃‘𝐼)) |
| 49 | 48 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = (𝑃‘𝐼)) |
| 50 | 49 | eqcomd 2628 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃‘𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼)) |
| 51 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 ∈ (1..^(#‘𝐹)) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) = (𝑃‘𝐽)) |
| 52 | 51 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) = (𝑃‘𝐽)) |
| 53 | 52 | eqcomd 2628 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃‘𝐽) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽)) |
| 54 | 50, 53 | eqeq12d 2637 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) ↔ ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽))) |
| 55 | | fssres 6070 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (1..^(#‘𝐹)) ⊆ (0...(#‘𝐹))) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺)) |
| 56 | 21, 55 | mpan2 707 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺)) |
| 57 | | df-f1 5893 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))))) |
| 58 | 57 | biimpri 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹)))) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺)) |
| 59 | 56, 58 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹)))) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺)) |
| 60 | 59 | 3adant3 1081 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺)) |
| 61 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) |
| 62 | 61 | ancomd 467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (1..^(#‘𝐹)))) |
| 63 | | f1veqaeq 6514 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ↾ (1..^(#‘𝐹))):(1..^(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ (𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (1..^(#‘𝐹)))) → (((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) → 𝐼 = 𝐽)) |
| 64 | 60, 62, 63 | syl2an2r 876 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 ↾ (1..^(#‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(#‘𝐹)))‘𝐽) → 𝐼 = 𝐽)) |
| 65 | 54, 64 | sylbid 230 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) → 𝐼 = 𝐽)) |
| 66 | 65 | ancoms 469 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) ∧ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)) → ((𝑃‘𝐼) = (𝑃‘𝐽) → 𝐼 = 𝐽)) |
| 67 | 66 | necon3d 2815 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) ∧ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅)) → (𝐼 ≠ 𝐽 → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 68 | 67 | ex 450 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝐼 ≠ 𝐽 → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 69 | 68 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (1..^(#‘𝐹)) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 70 | 69 | ex 450 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (1..^(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 71 | 9 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (#‘𝐹) ∈
ℕ0) |
| 72 | 71, 11 | sylan2 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))))) |
| 73 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐽 = (#‘𝐹) → (𝑃‘𝐽) = (𝑃‘(#‘𝐹))) |
| 74 | 73 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 = (#‘𝐹) → ((𝑃‘𝐼) = (𝑃‘𝐽) ↔ (𝑃‘𝐼) = (𝑃‘(#‘𝐹)))) |
| 75 | 74 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) ↔ (𝑃‘𝐼) = (𝑃‘(#‘𝐹)))) |
| 76 | 27 | adantrl 752 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (Fun 𝑃 ∧ 𝐼 ∈ dom 𝑃)) |
| 77 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → 𝐼 ∈ (1..^(#‘𝐹))) |
| 78 | 76, 77, 30 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (𝑃‘𝐼) ∈ (𝑃 “ (1..^(#‘𝐹)))) |
| 79 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃‘𝐼) = (𝑃‘(#‘𝐹)) → ((𝑃‘𝐼) ∈ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹))))) |
| 80 | 78, 79 | syl5ibcom 235 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘(#‘𝐹)) → (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹))))) |
| 81 | 75, 80 | sylbid 230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) → (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹))))) |
| 82 | | nnel 2906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))) ↔ (𝑃‘(#‘𝐹)) ∈ (𝑃 “ (1..^(#‘𝐹)))) |
| 83 | 81, 82 | syl6ibr 242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘𝐼) = (𝑃‘𝐽) → ¬ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))))) |
| 84 | 83 | necon2ad 2809 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → ((𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 85 | 84 | adantld 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(#‘𝐹))) ∧ (𝑃‘(#‘𝐹)) ∉ (𝑃 “ (1..^(#‘𝐹)))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 86 | 72, 85 | sylbid 230 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹)))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 87 | 86 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 88 | 87 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 89 | 88 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 90 | 89 | 3imp 1256 |
. . . . . . . . . . . . 13
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 91 | 90 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 92 | 91 | a1d 25 |
. . . . . . . . . . 11
⊢ ((𝐽 = (#‘𝐹) ∧ 𝐼 ∈ (1..^(#‘𝐹))) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)))) |
| 93 | 92 | ex 450 |
. . . . . . . . . 10
⊢ (𝐽 = (#‘𝐹) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 94 | 46, 70, 93 | 3jaoi 1391 |
. . . . . . . . 9
⊢ ((𝐽 = 0 ∨ 𝐽 ∈ (1..^(#‘𝐹)) ∨ 𝐽 = (#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 95 | 5, 94 | syl 17 |
. . . . . . . 8
⊢ (𝐽 ∈ (0...(#‘𝐹)) → (𝐼 ∈ (1..^(#‘𝐹)) → (𝐼 ≠ 𝐽 → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 96 | 95 | 3imp21 1277 |
. . . . . . 7
⊢ ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ 𝐽) → ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 97 | 96 | com12 32 |
. . . . . 6
⊢ ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ 𝐽) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 98 | 97 | 3exp 1264 |
. . . . 5
⊢ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → (Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ 𝐽) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 99 | 2, 4, 98 | 3syl 18 |
. . . 4
⊢ (𝐹(Trails‘𝐺)𝑃 → (Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) → (((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ 𝐽) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))))) |
| 100 | 99 | 3imp 1256 |
. . 3
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(#‘𝐹))) ∧ ((𝑃 “ {0, (#‘𝐹)}) ∩ (𝑃 “ (1..^(#‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ 𝐽) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 101 | 1, 100 | sylbi 207 |
. 2
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ 𝐽) → (𝑃‘𝐼) ≠ (𝑃‘𝐽))) |
| 102 | 101 | imp 445 |
1
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(#‘𝐹)) ∧ 𝐽 ∈ (0...(#‘𝐹)) ∧ 𝐼 ≠ 𝐽)) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)) |