| Step | Hyp | Ref
| Expression |
| 1 | | cyclprop 26688 |
. . 3
⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))) |
| 2 | | pthiswlk 26623 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 3 | | upgr3v3e3cycl.e |
. . . . . . . . . 10
⊢ 𝐸 = (Edg‘𝐺) |
| 4 | 3 | upgrwlkvtxedg 26541 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) |
| 5 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 3
→ (𝑃‘(#‘𝐹)) = (𝑃‘3)) |
| 6 | 5 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 3
→ ((𝑃‘0) =
(𝑃‘(#‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3))) |
| 7 | 6 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 3
→ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)))) |
| 8 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢
((#‘𝐹) = 3
→ (0..^(#‘𝐹)) =
(0..^3)) |
| 9 | | fzo0to3tp 12554 |
. . . . . . . . . . . . . . . 16
⊢ (0..^3) =
{0, 1, 2} |
| 10 | 8, 9 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢
((#‘𝐹) = 3
→ (0..^(#‘𝐹)) =
{0, 1, 2}) |
| 11 | 10 | raleqdv 3144 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐹) = 3
→ (∀𝑘 ∈
(0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ∀𝑘 ∈ {0, 1, 2} {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)) |
| 12 | | c0ex 10034 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
| 13 | | 1ex 10035 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
| 14 | | 2ex 11092 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
V |
| 15 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑃‘𝑘) = (𝑃‘0)) |
| 16 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) |
| 17 | | 0p1e1 11132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 + 1) =
1 |
| 18 | 16, 17 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1)) |
| 20 | 15, 19 | preq12d 4276 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
| 21 | 20 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸)) |
| 22 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → (𝑃‘𝑘) = (𝑃‘1)) |
| 23 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 1 → (𝑘 + 1) = (1 + 1)) |
| 24 | | 1p1e2 11134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 + 1) =
2 |
| 25 | 23, 24 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 1 → (𝑘 + 1) = 2) |
| 26 | 25 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2)) |
| 27 | 22, 26 | preq12d 4276 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
| 28 | 27 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸)) |
| 29 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 2 → (𝑃‘𝑘) = (𝑃‘2)) |
| 30 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 2 → (𝑘 + 1) = (2 + 1)) |
| 31 | | 2p1e3 11151 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 + 1) =
3 |
| 32 | 30, 31 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 2 → (𝑘 + 1) = 3) |
| 33 | 32 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3)) |
| 34 | 29, 33 | preq12d 4276 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 2 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)}) |
| 35 | 34 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 2 → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) |
| 36 | 12, 13, 14, 21, 28, 35 | raltp 4240 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
{0, 1, 2} {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) |
| 37 | 11, 36 | syl6bb 276 |
. . . . . . . . . . . . 13
⊢
((#‘𝐹) = 3
→ (∀𝑘 ∈
(0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) |
| 38 | 7, 37 | anbi12d 747 |
. . . . . . . . . . . 12
⊢
((#‘𝐹) = 3
→ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) ∧ ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) ↔ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)))) |
| 39 | | upgr3v3e3cycl.v |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑉 = (Vtx‘𝐺) |
| 40 | 39 | wlkp 26512 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(#‘𝐹))⟶𝑉) |
| 41 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((#‘𝐹) = 3
→ (0...(#‘𝐹)) =
(0...3)) |
| 42 | 41 | feq2d 6031 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 3
→ (𝑃:(0...(#‘𝐹))⟶𝑉 ↔ 𝑃:(0...3)⟶𝑉)) |
| 43 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃:(0...3)⟶𝑉 → 𝑃:(0...3)⟶𝑉) |
| 44 | | 3nn0 11310 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 3 ∈
ℕ0 |
| 45 | | 0elfz 12436 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (3 ∈
ℕ0 → 0 ∈ (0...3)) |
| 46 | 44, 45 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃:(0...3)⟶𝑉 → 0 ∈
(0...3)) |
| 47 | 43, 46 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...3)⟶𝑉 → (𝑃‘0) ∈ 𝑉) |
| 48 | | 1nn0 11308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℕ0 |
| 49 | | 1lt3 11196 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 <
3 |
| 50 | | fvffz0 12457 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((3
∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3)
∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘1) ∈ 𝑉) |
| 51 | 50 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((3
∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3)
→ (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉)) |
| 52 | 44, 48, 49, 51 | mp3an 1424 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉) |
| 53 | | 2nn0 11309 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℕ0 |
| 54 | | 2lt3 11195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 <
3 |
| 55 | | fvffz0 12457 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((3
∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3)
∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘2) ∈ 𝑉) |
| 56 | 55 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((3
∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3)
→ (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉)) |
| 57 | 44, 53, 54, 56 | mp3an 1424 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉) |
| 58 | 47, 52, 57 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃:(0...3)⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
| 59 | 42, 58 | syl6bi 243 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝐹) = 3
→ (𝑃:(0...(#‘𝐹))⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
| 60 | 59 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃:(0...(#‘𝐹))⟶𝑉 → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
| 61 | 2, 40, 60 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹(Paths‘𝐺)𝑃 → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
| 62 | 61 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
| 63 | 62 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))) |
| 64 | 63 | impcom 446 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) = 3
∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)) |
| 65 | | preq2 4269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃‘3) = (𝑃‘0) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)}) |
| 66 | 65 | eqcoms 2630 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)}) |
| 67 | 66 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)}) |
| 68 | 67 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ({(𝑃‘2), (𝑃‘3)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)) |
| 69 | 68 | 3anbi3d 1405 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))) |
| 70 | 69 | biimpa 501 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)) |
| 71 | 70 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) = 3
∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)) |
| 72 | | simpll 790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 𝐹(Paths‘𝐺)𝑃) |
| 73 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((#‘𝐹) = 3
→ (1 < (#‘𝐹)
↔ 1 < 3)) |
| 74 | 49, 73 | mpbiri 248 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 3
→ 1 < (#‘𝐹)) |
| 75 | 74 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 1 < (#‘𝐹)) |
| 76 | | 3nn 11186 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 3 ∈
ℕ |
| 77 | | lbfzo0 12507 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 ∈
(0..^3) ↔ 3 ∈ ℕ) |
| 78 | 76, 77 | mpbir 221 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
(0..^3) |
| 79 | 78, 8 | syl5eleqr 2708 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 3
→ 0 ∈ (0..^(#‘𝐹))) |
| 80 | 79 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 0 ∈ (0..^(#‘𝐹))) |
| 81 | | pthdadjvtx 26626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 0 ∈ (0..^(#‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(0 + 1))) |
| 82 | | 1e0p1 11552 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 = (0 +
1) |
| 83 | 82 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃‘1) = (𝑃‘(0 + 1)) |
| 84 | 83 | neeq2i 2859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃‘0) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘(0 +
1))) |
| 85 | 81, 84 | sylibr 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 0 ∈ (0..^(#‘𝐹))) → (𝑃‘0) ≠ (𝑃‘1)) |
| 86 | 72, 75, 80, 85 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘0) ≠ (𝑃‘1)) |
| 87 | | elfzo0 12508 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 ∈
(0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1
< 3)) |
| 88 | 48, 76, 49, 87 | mpbir3an 1244 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
(0..^3) |
| 89 | 88, 8 | syl5eleqr 2708 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝐹) = 3
→ 1 ∈ (0..^(#‘𝐹))) |
| 90 | 89 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 1 ∈ (0..^(#‘𝐹))) |
| 91 | | pthdadjvtx 26626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 1 ∈ (0..^(#‘𝐹))) → (𝑃‘1) ≠ (𝑃‘(1 + 1))) |
| 92 | | df-2 11079 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 = (1 +
1) |
| 93 | 92 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃‘2) = (𝑃‘(1 + 1)) |
| 94 | 93 | neeq2i 2859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃‘1) ≠ (𝑃‘2) ↔ (𝑃‘1) ≠ (𝑃‘(1 +
1))) |
| 95 | 91, 94 | sylibr 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 1 ∈ (0..^(#‘𝐹))) → (𝑃‘1) ≠ (𝑃‘2)) |
| 96 | 72, 75, 90, 95 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘1) ≠ (𝑃‘2)) |
| 97 | | elfzo0 12508 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ∈
(0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2
< 3)) |
| 98 | 53, 76, 54, 97 | mpbir3an 1244 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
(0..^3) |
| 99 | 98, 8 | syl5eleqr 2708 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((#‘𝐹) = 3
→ 2 ∈ (0..^(#‘𝐹))) |
| 100 | 99 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 2 ∈ (0..^(#‘𝐹))) |
| 101 | | pthdadjvtx 26626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 2 ∈ (0..^(#‘𝐹))) → (𝑃‘2) ≠ (𝑃‘(2 + 1))) |
| 102 | 72, 75, 100, 101 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘(2 + 1))) |
| 103 | | neeq2 2857 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘3))) |
| 104 | | df-3 11080 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 3 = (2 +
1) |
| 105 | 104 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑃‘3) = (𝑃‘(2 + 1)) |
| 106 | 105 | neeq2i 2859 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃‘2) ≠ (𝑃‘3) ↔ (𝑃‘2) ≠ (𝑃‘(2 +
1))) |
| 107 | 103, 106 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1)))) |
| 108 | 107 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1)))) |
| 109 | 108 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1)))) |
| 110 | 102, 109 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘0)) |
| 111 | 86, 96, 110 | 3jca 1242 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))) |
| 112 | 111 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((#‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))) |
| 113 | 112 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((#‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))) |
| 114 | 113 | impcom 446 |
. . . . . . . . . . . . . 14
⊢
(((#‘𝐹) = 3
∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))) |
| 115 | | preq1 4268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝑃‘0) → {𝑎, 𝑏} = {(𝑃‘0), 𝑏}) |
| 116 | 115 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑃‘0) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), 𝑏} ∈ 𝐸)) |
| 117 | | preq2 4269 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝑃‘0) → {𝑐, 𝑎} = {𝑐, (𝑃‘0)}) |
| 118 | 117 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑃‘0) → ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, (𝑃‘0)} ∈ 𝐸)) |
| 119 | 116, 118 | 3anbi13d 1401 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝑃‘0) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ↔ ({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸))) |
| 120 | | neeq1 2856 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑃‘0) → (𝑎 ≠ 𝑏 ↔ (𝑃‘0) ≠ 𝑏)) |
| 121 | | neeq2 2857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑃‘0) → (𝑐 ≠ 𝑎 ↔ 𝑐 ≠ (𝑃‘0))) |
| 122 | 120, 121 | 3anbi13d 1401 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝑃‘0) → ((𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎) ↔ ((𝑃‘0) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0)))) |
| 123 | 119, 122 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑃‘0) → ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)) ↔ (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0))))) |
| 124 | | preq2 4269 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = (𝑃‘1) → {(𝑃‘0), 𝑏} = {(𝑃‘0), (𝑃‘1)}) |
| 125 | 124 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑃‘1) → ({(𝑃‘0), 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸)) |
| 126 | | preq1 4268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = (𝑃‘1) → {𝑏, 𝑐} = {(𝑃‘1), 𝑐}) |
| 127 | 126 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑃‘1) → ({𝑏, 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), 𝑐} ∈ 𝐸)) |
| 128 | 125, 127 | 3anbi12d 1400 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑃‘1) → (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸))) |
| 129 | | neeq2 2857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑃‘1) → ((𝑃‘0) ≠ 𝑏 ↔ (𝑃‘0) ≠ (𝑃‘1))) |
| 130 | | neeq1 2856 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑃‘1) → (𝑏 ≠ 𝑐 ↔ (𝑃‘1) ≠ 𝑐)) |
| 131 | 129, 130 | 3anbi12d 1400 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑃‘1) → (((𝑃‘0) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0)))) |
| 132 | 128, 131 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑃‘1) → ((({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0))))) |
| 133 | | preq2 4269 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝑃‘2) → {(𝑃‘1), 𝑐} = {(𝑃‘1), (𝑃‘2)}) |
| 134 | 133 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑃‘2) → ({(𝑃‘1), 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸)) |
| 135 | | preq1 4268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝑃‘2) → {𝑐, (𝑃‘0)} = {(𝑃‘2), (𝑃‘0)}) |
| 136 | 135 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑃‘2) → ({𝑐, (𝑃‘0)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)) |
| 137 | 134, 136 | 3anbi23d 1402 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))) |
| 138 | | neeq2 2857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑃‘2) → ((𝑃‘1) ≠ 𝑐 ↔ (𝑃‘1) ≠ (𝑃‘2))) |
| 139 | | neeq1 2856 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝑃‘2) → (𝑐 ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘0))) |
| 140 | 138, 139 | 3anbi23d 1402 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))) |
| 141 | 137, 140 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝑃‘2) → ((({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐 ∧ 𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))) |
| 142 | 123, 132,
141 | rspc3ev 3326 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ∧ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))) |
| 143 | 64, 71, 114, 142 | syl12anc 1324 |
. . . . . . . . . . . . 13
⊢
(((#‘𝐹) = 3
∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))) |
| 144 | 143 | ex 450 |
. . . . . . . . . . . 12
⊢
((#‘𝐹) = 3
→ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)))) |
| 145 | 38, 144 | sylbid 230 |
. . . . . . . . . . 11
⊢
((#‘𝐹) = 3
→ (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) ∧ ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)))) |
| 146 | 145 | expd 452 |
. . . . . . . . . 10
⊢
((#‘𝐹) = 3
→ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))))) |
| 147 | 146 | com13 88 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(0..^(#‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))))) |
| 148 | 4, 147 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))))) |
| 149 | 148 | expcom 451 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)))))) |
| 150 | 149 | com23 86 |
. . . . . 6
⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)))))) |
| 151 | 150 | expd 452 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))))))) |
| 152 | 2, 151 | mpcom 38 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)))))) |
| 153 | 152 | imp 445 |
. . 3
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))))) |
| 154 | 1, 153 | syl 17 |
. 2
⊢ (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))))) |
| 155 | 154 | 3imp21 1277 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (#‘𝐹) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))) |