MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr3v3e3cycl Structured version   Visualization version   GIF version

Theorem upgr3v3e3cycl 27040
Description: If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Hypotheses
Ref Expression
upgr3v3e3cycl.e 𝐸 = (Edg‘𝐺)
upgr3v3e3cycl.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
upgr3v3e3cycl ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (#‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎,𝑏,𝑐)   𝐺(𝑎,𝑏,𝑐)

Proof of Theorem upgr3v3e3cycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 26688 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))
2 pthiswlk 26623 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 upgr3v3e3cycl.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
43upgrwlkvtxedg 26541 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
5 fveq2 6191 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 3 → (𝑃‘(#‘𝐹)) = (𝑃‘3))
65eqeq2d 2632 . . . . . . . . . . . . . 14 ((#‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
76anbi2d 740 . . . . . . . . . . . . 13 ((#‘𝐹) = 3 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3))))
8 oveq2 6658 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 3 → (0..^(#‘𝐹)) = (0..^3))
9 fzo0to3tp 12554 . . . . . . . . . . . . . . . 16 (0..^3) = {0, 1, 2}
108, 9syl6eq 2672 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 3 → (0..^(#‘𝐹)) = {0, 1, 2})
1110raleqdv 3144 . . . . . . . . . . . . . 14 ((#‘𝐹) = 3 → (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
12 c0ex 10034 . . . . . . . . . . . . . . 15 0 ∈ V
13 1ex 10035 . . . . . . . . . . . . . . 15 1 ∈ V
14 2ex 11092 . . . . . . . . . . . . . . 15 2 ∈ V
15 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
16 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
17 0p1e1 11132 . . . . . . . . . . . . . . . . . . 19 (0 + 1) = 1
1816, 17syl6eq 2672 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → (𝑘 + 1) = 1)
1918fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
2015, 19preq12d 4276 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
2120eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸))
22 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
23 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
24 1p1e2 11134 . . . . . . . . . . . . . . . . . . 19 (1 + 1) = 2
2523, 24syl6eq 2672 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 + 1) = 2)
2625fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
2722, 26preq12d 4276 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
2827eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸))
29 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
30 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
31 2p1e3 11151 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
3230, 31syl6eq 2672 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 + 1) = 3)
3332fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
3429, 33preq12d 4276 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)})
3534eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑘 = 2 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))
3612, 13, 14, 21, 28, 35raltp 4240 . . . . . . . . . . . . . 14 (∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))
3711, 36syl6bb 276 . . . . . . . . . . . . 13 ((#‘𝐹) = 3 → (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)))
387, 37anbi12d 747 . . . . . . . . . . . 12 ((#‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) ∧ ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) ↔ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))))
39 upgr3v3e3cycl.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
4039wlkp 26512 . . . . . . . . . . . . . . . . . 18 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶𝑉)
41 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝐹) = 3 → (0...(#‘𝐹)) = (0...3))
4241feq2d 6031 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝐹) = 3 → (𝑃:(0...(#‘𝐹))⟶𝑉𝑃:(0...3)⟶𝑉))
43 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...3)⟶𝑉𝑃:(0...3)⟶𝑉)
44 3nn0 11310 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℕ0
45 0elfz 12436 . . . . . . . . . . . . . . . . . . . . . . 23 (3 ∈ ℕ0 → 0 ∈ (0...3))
4644, 45mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...3)⟶𝑉 → 0 ∈ (0...3))
4743, 46ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘0) ∈ 𝑉)
48 1nn0 11308 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
49 1lt3 11196 . . . . . . . . . . . . . . . . . . . . . 22 1 < 3
50 fvffz0 12457 . . . . . . . . . . . . . . . . . . . . . . 23 (((3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3) ∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
5150ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3) → (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉))
5244, 48, 49, 51mp3an 1424 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉)
53 2nn0 11309 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ0
54 2lt3 11195 . . . . . . . . . . . . . . . . . . . . . 22 2 < 3
55 fvffz0 12457 . . . . . . . . . . . . . . . . . . . . . . 23 (((3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3) ∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
5655ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3) → (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉))
5744, 53, 54, 56mp3an 1424 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉)
5847, 52, 573jca 1242 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...3)⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
5942, 58syl6bi 243 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐹) = 3 → (𝑃:(0...(#‘𝐹))⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6059com12 32 . . . . . . . . . . . . . . . . . 18 (𝑃:(0...(#‘𝐹))⟶𝑉 → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
612, 40, 603syl 18 . . . . . . . . . . . . . . . . 17 (𝐹(Paths‘𝐺)𝑃 → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6261adantr 481 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6362adantr 481 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((#‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6463impcom 446 . . . . . . . . . . . . . 14 (((#‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
65 preq2 4269 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6665eqcoms 2630 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6766adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6867eleq1d 2686 . . . . . . . . . . . . . . . . 17 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ({(𝑃‘2), (𝑃‘3)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
69683anbi3d 1405 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)))
7069biimpa 501 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
7170adantl 482 . . . . . . . . . . . . . 14 (((#‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
72 simpll 790 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 𝐹(Paths‘𝐺)𝑃)
73 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝐹) = 3 → (1 < (#‘𝐹) ↔ 1 < 3))
7449, 73mpbiri 248 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝐹) = 3 → 1 < (#‘𝐹))
7574adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 1 < (#‘𝐹))
76 3nn 11186 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ
77 lbfzo0 12507 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
7876, 77mpbir 221 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ (0..^3)
7978, 8syl5eleqr 2708 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝐹) = 3 → 0 ∈ (0..^(#‘𝐹)))
8079adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 0 ∈ (0..^(#‘𝐹)))
81 pthdadjvtx 26626 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 0 ∈ (0..^(#‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(0 + 1)))
82 1e0p1 11552 . . . . . . . . . . . . . . . . . . . . . 22 1 = (0 + 1)
8382fveq2i 6194 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘1) = (𝑃‘(0 + 1))
8483neeq2i 2859 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘(0 + 1)))
8581, 84sylibr 224 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 0 ∈ (0..^(#‘𝐹))) → (𝑃‘0) ≠ (𝑃‘1))
8672, 75, 80, 85syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘0) ≠ (𝑃‘1))
87 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ (0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3))
8848, 76, 49, 87mpbir3an 1244 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ (0..^3)
8988, 8syl5eleqr 2708 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝐹) = 3 → 1 ∈ (0..^(#‘𝐹)))
9089adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 1 ∈ (0..^(#‘𝐹)))
91 pthdadjvtx 26626 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 1 ∈ (0..^(#‘𝐹))) → (𝑃‘1) ≠ (𝑃‘(1 + 1)))
92 df-2 11079 . . . . . . . . . . . . . . . . . . . . . 22 2 = (1 + 1)
9392fveq2i 6194 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘2) = (𝑃‘(1 + 1))
9493neeq2i 2859 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘1) ≠ (𝑃‘2) ↔ (𝑃‘1) ≠ (𝑃‘(1 + 1)))
9591, 94sylibr 224 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 1 ∈ (0..^(#‘𝐹))) → (𝑃‘1) ≠ (𝑃‘2))
9672, 75, 90, 95syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘1) ≠ (𝑃‘2))
97 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3))
9853, 76, 54, 97mpbir3an 1244 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (0..^3)
9998, 8syl5eleqr 2708 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝐹) = 3 → 2 ∈ (0..^(#‘𝐹)))
10099adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → 2 ∈ (0..^(#‘𝐹)))
101 pthdadjvtx 26626 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (#‘𝐹) ∧ 2 ∈ (0..^(#‘𝐹))) → (𝑃‘2) ≠ (𝑃‘(2 + 1)))
10272, 75, 100, 101syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘(2 + 1)))
103 neeq2 2857 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘3)))
104 df-3 11080 . . . . . . . . . . . . . . . . . . . . . . . 24 3 = (2 + 1)
105104fveq2i 6194 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘3) = (𝑃‘(2 + 1))
106105neeq2i 2859 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘2) ≠ (𝑃‘3) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1)))
107103, 106syl6bb 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
108107adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
109108adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
110102, 109mpbird 247 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘0))
11186, 96, 1103jca 1242 . . . . . . . . . . . . . . . . 17 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (#‘𝐹) = 3) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))
112111ex 450 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((#‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
113112adantr 481 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((#‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
114113impcom 446 . . . . . . . . . . . . . 14 (((#‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))
115 preq1 4268 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑃‘0) → {𝑎, 𝑏} = {(𝑃‘0), 𝑏})
116115eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), 𝑏} ∈ 𝐸))
117 preq2 4269 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑃‘0) → {𝑐, 𝑎} = {𝑐, (𝑃‘0)})
118117eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, (𝑃‘0)} ∈ 𝐸))
119116, 1183anbi13d 1401 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑃‘0) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ↔ ({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸)))
120 neeq1 2856 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → (𝑎𝑏 ↔ (𝑃‘0) ≠ 𝑏))
121 neeq2 2857 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → (𝑐𝑎𝑐 ≠ (𝑃‘0)))
122120, 1213anbi13d 1401 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑃‘0) → ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0))))
123119, 122anbi12d 747 . . . . . . . . . . . . . . 15 (𝑎 = (𝑃‘0) → ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) ↔ (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0)))))
124 preq2 4269 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑃‘1) → {(𝑃‘0), 𝑏} = {(𝑃‘0), (𝑃‘1)})
125124eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ({(𝑃‘0), 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸))
126 preq1 4268 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑃‘1) → {𝑏, 𝑐} = {(𝑃‘1), 𝑐})
127126eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ({𝑏, 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), 𝑐} ∈ 𝐸))
128125, 1273anbi12d 1400 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑃‘1) → (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸)))
129 neeq2 2857 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ((𝑃‘0) ≠ 𝑏 ↔ (𝑃‘0) ≠ (𝑃‘1)))
130 neeq1 2856 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → (𝑏𝑐 ↔ (𝑃‘1) ≠ 𝑐))
131129, 1303anbi12d 1400 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑃‘1) → (((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0))))
132128, 131anbi12d 747 . . . . . . . . . . . . . . 15 (𝑏 = (𝑃‘1) → ((({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0)))))
133 preq2 4269 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑃‘2) → {(𝑃‘1), 𝑐} = {(𝑃‘1), (𝑃‘2)})
134133eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ({(𝑃‘1), 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸))
135 preq1 4268 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑃‘2) → {𝑐, (𝑃‘0)} = {(𝑃‘2), (𝑃‘0)})
136135eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ({𝑐, (𝑃‘0)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
137134, 1363anbi23d 1402 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)))
138 neeq2 2857 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ((𝑃‘1) ≠ 𝑐 ↔ (𝑃‘1) ≠ (𝑃‘2)))
139 neeq1 2856 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → (𝑐 ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘0)))
140138, 1393anbi23d 1402 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
141137, 140anbi12d 747 . . . . . . . . . . . . . . 15 (𝑐 = (𝑃‘2) → ((({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))))
142123, 132, 141rspc3ev 3326 . . . . . . . . . . . . . 14 ((((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ∧ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
14364, 71, 114, 142syl12anc 1324 . . . . . . . . . . . . 13 (((#‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
144143ex 450 . . . . . . . . . . . 12 ((#‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))
14538, 144sylbid 230 . . . . . . . . . . 11 ((#‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) ∧ ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))
146145expd 452 . . . . . . . . . 10 ((#‘𝐹) = 3 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
147146com13 88 . . . . . . . . 9 (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1484, 147syl 17 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
149148expcom 451 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
150149com23 86 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
151150expd 452 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))))
1522, 151mpcom 38 . . . 4 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
153152imp 445 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1541, 153syl 17 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((#‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1551543imp21 1277 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (#‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {cpr 4179  {ctp 4181   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cn 11020  2c2 11070  3c3 11071  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Vtxcvtx 25874  Edgcedg 25939   UPGraph cupgr 25975  Walkscwlks 26492  Pathscpths 26608  Cyclesccycls 26680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-trls 26589  df-pths 26612  df-cycls 26682
This theorem is referenced by:  umgr3v3e3cycl  27044
  Copyright terms: Public domain W3C validator