MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksfclwwlk Structured version   Visualization version   GIF version

Theorem clwlksfclwwlk 26962
Description: There is a function between the set of closed walks (defined as words) of length n and the set of closed walks of length n. (Contributed by Alexander van der Vekens, 25-Jun-2018.) (Revised by AV, 2-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksfclwwlk ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝐶,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝐹(𝑐)

Proof of Theorem clwlksfclwwlk
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlksfclwwlk.c . . . . . 6 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
21rabeq2i 3197 . . . . 5 (𝑐𝐶 ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (#‘𝐴) = 𝑁))
3 fusgrusgr 26214 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )
4 usgrupgr 26077 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph )
53, 4syl 17 . . . . . . . . . . 11 (𝐺 ∈ FinUSGraph → 𝐺 ∈ UPGraph )
65adantr 481 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐺 ∈ UPGraph )
7 eqid 2622 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
8 eqid 2622 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
9 clwlksfclwwlk.1 . . . . . . . . . . 11 𝐴 = (1st𝑐)
10 clwlksfclwwlk.2 . . . . . . . . . . 11 𝐵 = (2nd𝑐)
117, 8, 9, 10upgrclwlkcompim 26677 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ ∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))))
126, 11sylan 488 . . . . . . . . 9 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ ∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))))
13 lencl 13324 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word dom (iEdg‘𝐺) → (#‘𝐴) ∈ ℕ0)
14 clwlksfclwwlk.f . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
159, 10, 1, 14clwlksfclwwlk2wrd 26958 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐𝐶𝐵 ∈ Word (Vtx‘𝐺))
1615ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → 𝐵 ∈ Word (Vtx‘𝐺))
17 swrdcl 13419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ Word (Vtx‘𝐺) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ Word (Vtx‘𝐺))
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ Word (Vtx‘𝐺))
19 ffz0iswrd 13332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
20193ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ (#‘𝐴) = 𝑁 ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → 𝐵 ∈ Word (Vtx‘𝐺))
21 prmnn 15388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
2221adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ)
23223ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ (#‘𝐴) = 𝑁 ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → 𝑁 ∈ ℕ)
24 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((#‘𝐴) = 𝑁 → (0...(#‘𝐴)) = (0...𝑁))
2524feq2d 6031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((#‘𝐴) = 𝑁 → (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ↔ 𝐵:(0...𝑁)⟶(Vtx‘𝐺)))
2622nnnn0d 11351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ∈ ℕ0)
27 ffz0hash 13231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℕ0𝐵:(0...𝑁)⟶(Vtx‘𝐺)) → (#‘𝐵) = (𝑁 + 1))
2826, 27sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝐵:(0...𝑁)⟶(Vtx‘𝐺)) → (#‘𝐵) = (𝑁 + 1))
2928ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵:(0...𝑁)⟶(Vtx‘𝐺) → (#‘𝐵) = (𝑁 + 1)))
3021nnred 11035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑁 ∈ ℙ → 𝑁 ∈ ℝ)
3130adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑁 ∈ ℙ ∧ (#‘𝐵) = (𝑁 + 1)) → 𝑁 ∈ ℝ)
3231lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℙ ∧ (#‘𝐵) = (𝑁 + 1)) → 𝑁 ≤ (𝑁 + 1))
33 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((#‘𝐵) = (𝑁 + 1) → (𝑁 ≤ (#‘𝐵) ↔ 𝑁 ≤ (𝑁 + 1)))
3433adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 ∈ ℙ ∧ (#‘𝐵) = (𝑁 + 1)) → (𝑁 ≤ (#‘𝐵) ↔ 𝑁 ≤ (𝑁 + 1)))
3532, 34mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 ∈ ℙ ∧ (#‘𝐵) = (𝑁 + 1)) → 𝑁 ≤ (#‘𝐵))
3635ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 ∈ ℙ → ((#‘𝐵) = (𝑁 + 1) → 𝑁 ≤ (#‘𝐵)))
3736adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → ((#‘𝐵) = (𝑁 + 1) → 𝑁 ≤ (#‘𝐵)))
3829, 37syldc 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵:(0...𝑁)⟶(Vtx‘𝐺) → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ≤ (#‘𝐵)))
3925, 38syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝐴) = 𝑁 → (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝑁 ≤ (#‘𝐵))))
40393imp21 1277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ (#‘𝐴) = 𝑁 ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → 𝑁 ≤ (#‘𝐵))
41 swrdn0 13430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (#‘𝐵)) → (𝐵 substr ⟨0, 𝑁⟩) ≠ ∅)
4220, 23, 40, 41syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ (#‘𝐴) = 𝑁 ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (𝐵 substr ⟨0, 𝑁⟩) ≠ ∅)
43 opeq2 4403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((#‘𝐴) = 𝑁 → ⟨0, (#‘𝐴)⟩ = ⟨0, 𝑁⟩)
4443oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝐴) = 𝑁 → (𝐵 substr ⟨0, (#‘𝐴)⟩) = (𝐵 substr ⟨0, 𝑁⟩))
4544neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝐴) = 𝑁 → ((𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅ ↔ (𝐵 substr ⟨0, 𝑁⟩) ≠ ∅))
46453ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ (#‘𝐴) = 𝑁 ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → ((𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅ ↔ (𝐵 substr ⟨0, 𝑁⟩) ≠ ∅))
4742, 46mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ (#‘𝐴) = 𝑁 ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅)
48473exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) → ((#‘𝐴) = 𝑁 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅)))
4948ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) → ((#‘𝐴) = 𝑁 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅)))
5049imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅))
5150adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅))
5251imp 445 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅)
5318, 52jca 554 . . . . . . . . . . . . . . . . . . . . 21 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → ((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ Word (Vtx‘𝐺) ∧ (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅))
54 simp-5r 809 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → 𝐴 ∈ Word dom (iEdg‘𝐺))
553adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐺 ∈ USGraph )
5654, 55anim12ci 591 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (𝐺 ∈ USGraph ∧ 𝐴 ∈ Word dom (iEdg‘𝐺)))
57 simp-5r 809 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺))
58 prmuz2 15408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
59 ffz0hash 13231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((#‘𝐴) ∈ ℕ0𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) → (#‘𝐵) = ((#‘𝐴) + 1))
6059adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) → (#‘𝐵) = ((#‘𝐴) + 1))
61 eluz2 11693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((#‘𝐴) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧ 2 ≤ (#‘𝐴)))
62 2re 11090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 ∈ ℝ
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝐴) ∈ ℤ → 2 ∈ ℝ)
64 zre 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝐴) ∈ ℤ → (#‘𝐴) ∈ ℝ)
65 peano2re 10209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((#‘𝐴) ∈ ℝ → ((#‘𝐴) + 1) ∈ ℝ)
6664, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝐴) ∈ ℤ → ((#‘𝐴) + 1) ∈ ℝ)
6763, 64, 663jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝐴) ∈ ℤ → (2 ∈ ℝ ∧ (#‘𝐴) ∈ ℝ ∧ ((#‘𝐴) + 1) ∈ ℝ))
6867adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((#‘𝐴) ∈ ℤ ∧ 2 ≤ (#‘𝐴)) → (2 ∈ ℝ ∧ (#‘𝐴) ∈ ℝ ∧ ((#‘𝐴) + 1) ∈ ℝ))
69 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((#‘𝐴) ∈ ℤ ∧ 2 ≤ (#‘𝐴)) → 2 ≤ (#‘𝐴))
7064lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝐴) ∈ ℤ → (#‘𝐴) ≤ ((#‘𝐴) + 1))
7170adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((#‘𝐴) ∈ ℤ ∧ 2 ≤ (#‘𝐴)) → (#‘𝐴) ≤ ((#‘𝐴) + 1))
72 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((2 ∈ ℝ ∧ (#‘𝐴) ∈ ℝ ∧ ((#‘𝐴) + 1) ∈ ℝ) → ((2 ≤ (#‘𝐴) ∧ (#‘𝐴) ≤ ((#‘𝐴) + 1)) → 2 ≤ ((#‘𝐴) + 1)))
7372imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((2 ∈ ℝ ∧ (#‘𝐴) ∈ ℝ ∧ ((#‘𝐴) + 1) ∈ ℝ) ∧ (2 ≤ (#‘𝐴) ∧ (#‘𝐴) ≤ ((#‘𝐴) + 1))) → 2 ≤ ((#‘𝐴) + 1))
7468, 69, 71, 73syl12anc 1324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((#‘𝐴) ∈ ℤ ∧ 2 ≤ (#‘𝐴)) → 2 ≤ ((#‘𝐴) + 1))
75743adant1 1079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((2 ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧ 2 ≤ (#‘𝐴)) → 2 ≤ ((#‘𝐴) + 1))
7661, 75sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((#‘𝐴) ∈ (ℤ‘2) → 2 ≤ ((#‘𝐴) + 1))
7776a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((#‘𝐵) = ((#‘𝐴) + 1) ∧ (#‘𝐴) = 𝑁) → ((#‘𝐴) ∈ (ℤ‘2) → 2 ≤ ((#‘𝐴) + 1)))
78 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 = (#‘𝐴) → (𝑁 ∈ (ℤ‘2) ↔ (#‘𝐴) ∈ (ℤ‘2)))
7978eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((#‘𝐴) = 𝑁 → (𝑁 ∈ (ℤ‘2) ↔ (#‘𝐴) ∈ (ℤ‘2)))
8079adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((#‘𝐵) = ((#‘𝐴) + 1) ∧ (#‘𝐴) = 𝑁) → (𝑁 ∈ (ℤ‘2) ↔ (#‘𝐴) ∈ (ℤ‘2)))
81 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((#‘𝐵) = ((#‘𝐴) + 1) → (2 ≤ (#‘𝐵) ↔ 2 ≤ ((#‘𝐴) + 1)))
8281adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((#‘𝐵) = ((#‘𝐴) + 1) ∧ (#‘𝐴) = 𝑁) → (2 ≤ (#‘𝐵) ↔ 2 ≤ ((#‘𝐴) + 1)))
8377, 80, 823imtr4d 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((#‘𝐵) = ((#‘𝐴) + 1) ∧ (#‘𝐴) = 𝑁) → (𝑁 ∈ (ℤ‘2) → 2 ≤ (#‘𝐵)))
8483ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((#‘𝐵) = ((#‘𝐴) + 1) → ((#‘𝐴) = 𝑁 → (𝑁 ∈ (ℤ‘2) → 2 ≤ (#‘𝐵))))
8560, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) → ((#‘𝐴) = 𝑁 → (𝑁 ∈ (ℤ‘2) → 2 ≤ (#‘𝐵))))
8685adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) → ((#‘𝐴) = 𝑁 → (𝑁 ∈ (ℤ‘2) → 2 ≤ (#‘𝐵))))
8786imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) → (𝑁 ∈ (ℤ‘2) → 2 ≤ (#‘𝐵)))
8887adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → (𝑁 ∈ (ℤ‘2) → 2 ≤ (#‘𝐵)))
8958, 88syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℙ → (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → 2 ≤ (#‘𝐵)))
9089adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → 2 ≤ (#‘𝐵)))
9190impcom 446 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → 2 ≤ (#‘𝐵))
92 simp-4r 807 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))))
937, 8usgrf 26050 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 ∈ USGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) = 2})
9493anim1i 592 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ USGraph ∧ 𝐴 ∈ Word dom (iEdg‘𝐺)) → ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) = 2} ∧ 𝐴 ∈ Word dom (iEdg‘𝐺)))
95 clwlkclwwlklem2 26901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) = 2} ∧ 𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ 2 ≤ (#‘𝐵)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) → (( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) ∧ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ ran (iEdg‘𝐺)))
9694, 95syl3an1 1359 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺 ∈ USGraph ∧ 𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ 2 ≤ (#‘𝐵)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) → (( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) ∧ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ ran (iEdg‘𝐺)))
97 biid 251 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( lastS ‘𝐵) = (𝐵‘0) ↔ ( lastS ‘𝐵) = (𝐵‘0))
98 edgval 25941 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Edg‘𝐺) = ran (iEdg‘𝐺)
9998eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))
10099ralbii 2980 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺))
10198eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ (Edg‘𝐺) ↔ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ ran (iEdg‘𝐺))
10297, 100, 1013anbi123i 1251 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ (Edg‘𝐺)) ↔ (( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ ran (iEdg‘𝐺) ∧ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ ran (iEdg‘𝐺)))
10396, 102sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ USGraph ∧ 𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) ∧ 2 ≤ (#‘𝐵)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) → (( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ (Edg‘𝐺)))
10456, 57, 91, 92, 103syl121anc 1331 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ (Edg‘𝐺)))
1059, 10, 1, 14clwlksfclwwlk1hash 26960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐𝐶 → (#‘𝐴) ∈ (0...(#‘𝐵)))
106 simp2 1062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → 𝐵 ∈ Word (Vtx‘𝐺))
107 simp1 1061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → (#‘𝐴) ∈ (0...(#‘𝐵)))
108 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((#‘𝐴) ∈ (0...(#‘𝐵)) → (#‘𝐴) ∈ ℤ)
109 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝐴) ∈ ℤ → ((#‘𝐴) − 1) ∈ ℤ)
110 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝐴) ∈ ℤ → (#‘𝐴) ∈ ℤ)
11164lem1d 10957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝐴) ∈ ℤ → ((#‘𝐴) − 1) ≤ (#‘𝐴))
112 eluz2 11693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝐴) ∈ (ℤ‘((#‘𝐴) − 1)) ↔ (((#‘𝐴) − 1) ∈ ℤ ∧ (#‘𝐴) ∈ ℤ ∧ ((#‘𝐴) − 1) ≤ (#‘𝐴)))
113109, 110, 111, 112syl3anbrc 1246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((#‘𝐴) ∈ ℤ → (#‘𝐴) ∈ (ℤ‘((#‘𝐴) − 1)))
114 fzoss2 12496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((#‘𝐴) ∈ (ℤ‘((#‘𝐴) − 1)) → (0..^((#‘𝐴) − 1)) ⊆ (0..^(#‘𝐴)))
115108, 113, 1143syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((#‘𝐴) ∈ (0...(#‘𝐵)) → (0..^((#‘𝐴) − 1)) ⊆ (0..^(#‘𝐴)))
116115sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → 𝑖 ∈ (0..^(#‘𝐴)))
1171163adant2 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → 𝑖 ∈ (0..^(#‘𝐴)))
118 swrd0fv 13439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝑖 ∈ (0..^(#‘𝐴))) → ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖) = (𝐵𝑖))
119106, 107, 117, 118syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖) = (𝐵𝑖))
120119eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → (𝐵𝑖) = ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖))
121 elfzom1elp1fzo 12534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((#‘𝐴) ∈ ℤ ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → (𝑖 + 1) ∈ (0..^(#‘𝐴)))
122108, 121sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → (𝑖 + 1) ∈ (0..^(#‘𝐴)))
1231223adant2 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → (𝑖 + 1) ∈ (0..^(#‘𝐴)))
124 swrd0fv 13439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (0...(#‘𝐵)) ∧ (𝑖 + 1) ∈ (0..^(#‘𝐴))) → ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1)) = (𝐵‘(𝑖 + 1)))
125124eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (0...(#‘𝐵)) ∧ (𝑖 + 1) ∈ (0..^(#‘𝐴))) → (𝐵‘(𝑖 + 1)) = ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1)))
126106, 107, 123, 125syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → (𝐵‘(𝑖 + 1)) = ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1)))
127120, 126preq12d 4276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^((#‘𝐴) − 1))) → {(𝐵𝑖), (𝐵‘(𝑖 + 1))} = {((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))})
1281273exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝐴) ∈ (0...(#‘𝐵)) → (𝐵 ∈ Word (Vtx‘𝐺) → (𝑖 ∈ (0..^((#‘𝐴) − 1)) → {(𝐵𝑖), (𝐵‘(𝑖 + 1))} = {((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))})))
129105, 15, 128sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐𝐶 → (𝑖 ∈ (0..^((#‘𝐴) − 1)) → {(𝐵𝑖), (𝐵‘(𝑖 + 1))} = {((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))}))
130129imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐𝐶𝑖 ∈ (0..^((#‘𝐴) − 1))) → {(𝐵𝑖), (𝐵‘(𝑖 + 1))} = {((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))})
131130eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐𝐶𝑖 ∈ (0..^((#‘𝐴) − 1))) → ({(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
132131ralbidva 2985 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐𝐶 → (∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
133132ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1349, 10, 1, 14clwlksfclwwlk2sswd 26961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐𝐶 → (#‘𝐴) = (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)))
135134oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐𝐶 → ((#‘𝐴) − 1) = ((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1))
136135ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → ((#‘𝐴) − 1) = ((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1))
137136oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (0..^((#‘𝐴) − 1)) = (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)))
138137raleqdv 3144 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (∀𝑖 ∈ (0..^((#‘𝐴) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
139133, 138bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
140 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 = (#‘𝐴) → (𝑁 ∈ ℙ ↔ (#‘𝐴) ∈ ℙ))
141140biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 = (#‘𝐴) → (𝑁 ∈ ℙ → (#‘𝐴) ∈ ℙ))
142141eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((#‘𝐴) = 𝑁 → (𝑁 ∈ ℙ → (#‘𝐴) ∈ ℙ))
143 prmnn 15388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((#‘𝐴) ∈ ℙ → (#‘𝐴) ∈ ℕ)
144 elfz2nn0 12431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝐴) ∈ (0...(#‘𝐵)) ↔ ((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ≤ (#‘𝐵)))
145 1zzd 11408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0) → 1 ∈ ℤ)
146 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((#‘𝐵) ∈ ℕ0 → (#‘𝐵) ∈ ℤ)
147146adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0) → (#‘𝐵) ∈ ℤ)
148 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ ℤ)
149148adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0) → (#‘𝐴) ∈ ℤ)
150145, 147, 1493jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0) → (1 ∈ ℤ ∧ (#‘𝐵) ∈ ℤ ∧ (#‘𝐴) ∈ ℤ))
1511503adant3 1081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ≤ (#‘𝐵)) → (1 ∈ ℤ ∧ (#‘𝐵) ∈ ℤ ∧ (#‘𝐴) ∈ ℤ))
152151adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ≤ (#‘𝐵)) ∧ (#‘𝐴) ∈ ℕ) → (1 ∈ ℤ ∧ (#‘𝐵) ∈ ℤ ∧ (#‘𝐴) ∈ ℤ))
153 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ≤ (#‘𝐵)) → (#‘𝐴) ≤ (#‘𝐵))
154 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((#‘𝐴) ∈ ℕ → 1 ≤ (#‘𝐴))
155153, 154anim12ci 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ≤ (#‘𝐵)) ∧ (#‘𝐴) ∈ ℕ) → (1 ≤ (#‘𝐴) ∧ (#‘𝐴) ≤ (#‘𝐵)))
156152, 155jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ≤ (#‘𝐵)) ∧ (#‘𝐴) ∈ ℕ) → ((1 ∈ ℤ ∧ (#‘𝐵) ∈ ℤ ∧ (#‘𝐴) ∈ ℤ) ∧ (1 ≤ (#‘𝐴) ∧ (#‘𝐴) ≤ (#‘𝐵))))
157144, 156sylanb 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ (#‘𝐴) ∈ ℕ) → ((1 ∈ ℤ ∧ (#‘𝐵) ∈ ℤ ∧ (#‘𝐴) ∈ ℤ) ∧ (1 ≤ (#‘𝐴) ∧ (#‘𝐴) ≤ (#‘𝐵))))
158 elfz2 12333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝐴) ∈ (1...(#‘𝐵)) ↔ ((1 ∈ ℤ ∧ (#‘𝐵) ∈ ℤ ∧ (#‘𝐴) ∈ ℤ) ∧ (1 ≤ (#‘𝐴) ∧ (#‘𝐴) ≤ (#‘𝐵))))
159157, 158sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ (#‘𝐴) ∈ ℕ) → (#‘𝐴) ∈ (1...(#‘𝐵)))
160 swrd0fvlsw 13443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (1...(#‘𝐵))) → ( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = (𝐵‘((#‘𝐴) − 1)))
161160eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (1...(#‘𝐵))) → (𝐵‘((#‘𝐴) − 1)) = ( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)))
162 swrd0fv0 13440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (1...(#‘𝐵))) → ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0) = (𝐵‘0))
163162eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (1...(#‘𝐵))) → (𝐵‘0) = ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0))
164161, 163preq12d 4276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐵 ∈ Word (Vtx‘𝐺) ∧ (#‘𝐴) ∈ (1...(#‘𝐵))) → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)})
165164expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((#‘𝐴) ∈ (1...(#‘𝐵)) → (𝐵 ∈ Word (Vtx‘𝐺) → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)}))
166159, 165syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((#‘𝐴) ∈ (0...(#‘𝐵)) ∧ (#‘𝐴) ∈ ℕ) → (𝐵 ∈ Word (Vtx‘𝐺) → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)}))
167166ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((#‘𝐴) ∈ (0...(#‘𝐵)) → ((#‘𝐴) ∈ ℕ → (𝐵 ∈ Word (Vtx‘𝐺) → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)})))
168167com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((#‘𝐴) ∈ (0...(#‘𝐵)) → (𝐵 ∈ Word (Vtx‘𝐺) → ((#‘𝐴) ∈ ℕ → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)})))
169105, 15, 168sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐𝐶 → ((#‘𝐴) ∈ ℕ → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)}))
170143, 169syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((#‘𝐴) ∈ ℙ → (𝑐𝐶 → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)}))
171142, 170syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((#‘𝐴) = 𝑁 → (𝑁 ∈ ℙ → (𝑐𝐶 → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)})))
172171com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝐴) = 𝑁 → (𝑐𝐶 → (𝑁 ∈ ℙ → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)})))
173172adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) → (𝑐𝐶 → (𝑁 ∈ ℙ → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)})))
174173imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → (𝑁 ∈ ℙ → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)}))
175174com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℙ → (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)}))
176175adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)}))
177176impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} = {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)})
178177eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → ({(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ (Edg‘𝐺) ↔ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)))
179139, 1783anbi23d 1402 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → ((( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(𝐵‘((#‘𝐴) − 1)), (𝐵‘0)} ∈ (Edg‘𝐺)) ↔ (( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺))))
180104, 179mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)))
181 3simpc 1060 . . . . . . . . . . . . . . . . . . . . . 22 ((( lastS ‘𝐵) = (𝐵‘0) ∧ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)))
182180, 181syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)))
183 3anass 1042 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ Word (Vtx‘𝐺) ∧ (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)) ↔ (((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ Word (Vtx‘𝐺) ∧ (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅) ∧ (∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺))))
18453, 182, 183sylanbrc 698 . . . . . . . . . . . . . . . . . . . 20 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ Word (Vtx‘𝐺) ∧ (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)))
185 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (Edg‘𝐺) = (Edg‘𝐺)
1867, 185isclwwlks 26880 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (ClWWalks‘𝐺) ↔ (((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ Word (Vtx‘𝐺) ∧ (𝐵 substr ⟨0, (#‘𝐴)⟩) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) − 1)){((𝐵 substr ⟨0, (#‘𝐴)⟩)‘𝑖), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘(𝐵 substr ⟨0, (#‘𝐴)⟩)), ((𝐵 substr ⟨0, (#‘𝐴)⟩)‘0)} ∈ (Edg‘𝐺)))
187184, 186sylibr 224 . . . . . . . . . . . . . . . . . . 19 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (ClWWalks‘𝐺))
188134eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐𝐶 → ((#‘𝐴) = 𝑁 ↔ (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁))
189188biimpcd 239 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝐴) = 𝑁 → (𝑐𝐶 → (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁))
190189adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) → (𝑐𝐶 → (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁))
191190imp 445 . . . . . . . . . . . . . . . . . . . 20 (((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) → (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁)
192191adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁)
193187, 192jca 554 . . . . . . . . . . . . . . . . . 18 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → ((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁))
19422adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → 𝑁 ∈ ℕ)
195 isclwwlksn 26882 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → ((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁)))
196194, 195syl 17 . . . . . . . . . . . . . . . . . 18 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → ((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (ClWWalks‘𝐺) ∧ (#‘(𝐵 substr ⟨0, (#‘𝐴)⟩)) = 𝑁)))
197193, 196mpbird 247 . . . . . . . . . . . . . . . . 17 ((((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) ∧ 𝑐𝐶) ∧ (𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ)) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺))
198197exp31 630 . . . . . . . . . . . . . . . 16 ((((((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ (∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴)))) ∧ (#‘𝐴) = 𝑁) → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺))))
199198exp41 638 . . . . . . . . . . . . . . 15 (((#‘𝐴) ∈ ℕ0𝐴 ∈ Word dom (iEdg‘𝐺)) → (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) → ((∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))) → ((#‘𝐴) = 𝑁 → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))))
20013, 199mpancom 703 . . . . . . . . . . . . . 14 (𝐴 ∈ Word dom (iEdg‘𝐺) → (𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺) → ((∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))) → ((#‘𝐴) = 𝑁 → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))))
201200imp 445 . . . . . . . . . . . . 13 ((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))) → ((#‘𝐴) = 𝑁 → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺))))))
2022013impib 1262 . . . . . . . . . . . 12 (((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ ∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))) → ((#‘𝐴) = 𝑁 → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))
203202com12 32 . . . . . . . . . . 11 ((#‘𝐴) = 𝑁 → (((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ ∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))) → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))
204203com14 96 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ ∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))) → (𝑐𝐶 → ((#‘𝐴) = 𝑁 → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))
205204adantr 481 . . . . . . . . 9 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → (((𝐴 ∈ Word dom (iEdg‘𝐺) ∧ 𝐵:(0...(#‘𝐴))⟶(Vtx‘𝐺)) ∧ ∀𝑖 ∈ (0..^(#‘𝐴))((iEdg‘𝐺)‘(𝐴𝑖)) = {(𝐵𝑖), (𝐵‘(𝑖 + 1))} ∧ (𝐵‘0) = (𝐵‘(#‘𝐴))) → (𝑐𝐶 → ((#‘𝐴) = 𝑁 → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))
20612, 205mpd 15 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → (𝑐𝐶 → ((#‘𝐴) = 𝑁 → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺))))
207206expcom 451 . . . . . . 7 (𝑐 ∈ (ClWalks‘𝐺) → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝑐𝐶 → ((#‘𝐴) = 𝑁 → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))
208207com24 95 . . . . . 6 (𝑐 ∈ (ClWalks‘𝐺) → ((#‘𝐴) = 𝑁 → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))))
209208imp 445 . . . . 5 ((𝑐 ∈ (ClWalks‘𝐺) ∧ (#‘𝐴) = 𝑁) → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺))))
2102, 209sylbi 207 . . . 4 (𝑐𝐶 → (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺))))
211210pm2.43i 52 . . 3 (𝑐𝐶 → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺)))
212211impcom 446 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) ∧ 𝑐𝐶) → (𝐵 substr ⟨0, (#‘𝐴)⟩) ∈ (𝑁 ClWWalksN 𝐺))
213212, 14fmptd 6385 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ) → 𝐹:𝐶⟶(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  cdif 3571  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  cprime 15385  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975   USGraph cusgr 26044   FinUSGraph cfusgr 26208  ClWalkscclwlks 26666  ClWWalkscclwwlks 26875   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-wlks 26495  df-clwlks 26667  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  clwlksfoclwwlk  26963  clwlksf1clwwlk  26969
  Copyright terms: Public domain W3C validator