MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem2 Structured version   Visualization version   GIF version

Theorem ackbij1lem2 9043
Description: Lemma for ackbij2 9065. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem2 (𝐴𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵𝐴)))

Proof of Theorem ackbij1lem2
StepHypRef Expression
1 df-suc 5729 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
21ineq2i 3811 . . 3 (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴}))
3 indi 3873 . . 3 (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴}))
4 uncom 3757 . . 3 ((𝐵𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴))
52, 3, 43eqtri 2648 . 2 (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴))
6 snssi 4339 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
7 sseqin2 3817 . . . 4 ({𝐴} ⊆ 𝐵 ↔ (𝐵 ∩ {𝐴}) = {𝐴})
86, 7sylib 208 . . 3 (𝐴𝐵 → (𝐵 ∩ {𝐴}) = {𝐴})
98uneq1d 3766 . 2 (𝐴𝐵 → ((𝐵 ∩ {𝐴}) ∪ (𝐵𝐴)) = ({𝐴} ∪ (𝐵𝐴)))
105, 9syl5eq 2668 1 (𝐴𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cun 3572  cin 3573  wss 3574  {csn 4177  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-suc 5729
This theorem is referenced by:  ackbij1lem15  9056  ackbij1lem16  9057
  Copyright terms: Public domain W3C validator