| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏)) |
| 2 | | fvex 6201 |
. . . . . 6
⊢
(rec(𝐺,
∅)‘𝑎) ∈
V |
| 3 | 1, 2 | fun11iun 7126 |
. . . . 5
⊢
(∀𝑎 ∈
ω ((rec(𝐺,
∅)‘𝑎):(𝑅1‘𝑎)–1-1→ω ∧ ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))) → ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪ 𝑎 ∈ ω
(𝑅1‘𝑎)–1-1→ω) |
| 4 | | ackbij.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| 5 | | ackbij.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) |
| 6 | 4, 5 | ackbij2lem2 9062 |
. . . . . . . 8
⊢ (𝑎 ∈ ω →
(rec(𝐺,
∅)‘𝑎):(𝑅1‘𝑎)–1-1-onto→(card‘(𝑅1‘𝑎))) |
| 7 | | f1of1 6136 |
. . . . . . . 8
⊢
((rec(𝐺,
∅)‘𝑎):(𝑅1‘𝑎)–1-1-onto→(card‘(𝑅1‘𝑎)) → (rec(𝐺, ∅)‘𝑎):(𝑅1‘𝑎)–1-1→(card‘(𝑅1‘𝑎))) |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝑎 ∈ ω →
(rec(𝐺,
∅)‘𝑎):(𝑅1‘𝑎)–1-1→(card‘(𝑅1‘𝑎))) |
| 9 | | ordom 7074 |
. . . . . . . 8
⊢ Ord
ω |
| 10 | | r1fin 8636 |
. . . . . . . . 9
⊢ (𝑎 ∈ ω →
(𝑅1‘𝑎) ∈ Fin) |
| 11 | | ficardom 8787 |
. . . . . . . . 9
⊢
((𝑅1‘𝑎) ∈ Fin →
(card‘(𝑅1‘𝑎)) ∈ ω) |
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝑎 ∈ ω →
(card‘(𝑅1‘𝑎)) ∈ ω) |
| 13 | | ordelss 5739 |
. . . . . . . 8
⊢ ((Ord
ω ∧ (card‘(𝑅1‘𝑎)) ∈ ω) →
(card‘(𝑅1‘𝑎)) ⊆ ω) |
| 14 | 9, 12, 13 | sylancr 695 |
. . . . . . 7
⊢ (𝑎 ∈ ω →
(card‘(𝑅1‘𝑎)) ⊆ ω) |
| 15 | | f1ss 6106 |
. . . . . . 7
⊢
(((rec(𝐺,
∅)‘𝑎):(𝑅1‘𝑎)–1-1→(card‘(𝑅1‘𝑎)) ∧
(card‘(𝑅1‘𝑎)) ⊆ ω) → (rec(𝐺, ∅)‘𝑎):(𝑅1‘𝑎)–1-1→ω) |
| 16 | 8, 14, 15 | syl2anc 693 |
. . . . . 6
⊢ (𝑎 ∈ ω →
(rec(𝐺,
∅)‘𝑎):(𝑅1‘𝑎)–1-1→ω) |
| 17 | | nnord 7073 |
. . . . . . . . 9
⊢ (𝑎 ∈ ω → Ord 𝑎) |
| 18 | | nnord 7073 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → Ord 𝑏) |
| 19 | | ordtri2or2 5823 |
. . . . . . . . 9
⊢ ((Ord
𝑎 ∧ Ord 𝑏) → (𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎)) |
| 20 | 17, 18, 19 | syl2an 494 |
. . . . . . . 8
⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎)) |
| 21 | 4, 5 | ackbij2lem4 9064 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ ω ∧ 𝑎 ∈ ω) ∧ 𝑎 ⊆ 𝑏) → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏)) |
| 22 | 21 | ex 450 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ 𝑎 ∈ ω) → (𝑎 ⊆ 𝑏 → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏))) |
| 23 | 22 | ancoms 469 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎 ⊆ 𝑏 → (rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏))) |
| 24 | 4, 5 | ackbij2lem4 9064 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑏 ⊆ 𝑎) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)) |
| 25 | 24 | ex 450 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑏 ⊆ 𝑎 → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎))) |
| 26 | 23, 25 | orim12d 883 |
. . . . . . . 8
⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝑎 ⊆ 𝑏 ∨ 𝑏 ⊆ 𝑎) → ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))) |
| 27 | 20, 26 | mpd 15 |
. . . . . . 7
⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) →
((rec(𝐺,
∅)‘𝑎) ⊆
(rec(𝐺,
∅)‘𝑏) ∨
(rec(𝐺,
∅)‘𝑏) ⊆
(rec(𝐺,
∅)‘𝑎))) |
| 28 | 27 | ralrimiva 2966 |
. . . . . 6
⊢ (𝑎 ∈ ω →
∀𝑏 ∈ ω
((rec(𝐺,
∅)‘𝑎) ⊆
(rec(𝐺,
∅)‘𝑏) ∨
(rec(𝐺,
∅)‘𝑏) ⊆
(rec(𝐺,
∅)‘𝑎))) |
| 29 | 16, 28 | jca 554 |
. . . . 5
⊢ (𝑎 ∈ ω →
((rec(𝐺,
∅)‘𝑎):(𝑅1‘𝑎)–1-1→ω ∧ ∀𝑏 ∈ ω ((rec(𝐺, ∅)‘𝑎) ⊆ (rec(𝐺, ∅)‘𝑏) ∨ (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘𝑎)))) |
| 30 | 3, 29 | mprg 2926 |
. . . 4
⊢ ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪ 𝑎 ∈ ω
(𝑅1‘𝑎)–1-1→ω |
| 31 | | rdgfun 7512 |
. . . . . 6
⊢ Fun
rec(𝐺,
∅) |
| 32 | | funiunfv 6506 |
. . . . . . 7
⊢ (Fun
rec(𝐺, ∅) →
∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎) = ∪ (rec(𝐺, ∅) “
ω)) |
| 33 | 32 | eqcomd 2628 |
. . . . . 6
⊢ (Fun
rec(𝐺, ∅) →
∪ (rec(𝐺, ∅) “ ω) = ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎)) |
| 34 | | f1eq1 6096 |
. . . . . 6
⊢ (∪ (rec(𝐺, ∅) “ ω) = ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎) → (∪
(rec(𝐺, ∅) “
ω):∪ (𝑅1 “
ω)–1-1→ω ↔
∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪
(𝑅1 “ ω)–1-1→ω)) |
| 35 | 31, 33, 34 | mp2b 10 |
. . . . 5
⊢ (∪ (rec(𝐺, ∅) “ ω):∪ (𝑅1 “ ω)–1-1→ω ↔ ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪
(𝑅1 “ ω)–1-1→ω) |
| 36 | | r1funlim 8629 |
. . . . . . 7
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
| 37 | 36 | simpli 474 |
. . . . . 6
⊢ Fun
𝑅1 |
| 38 | | funiunfv 6506 |
. . . . . 6
⊢ (Fun
𝑅1 → ∪ 𝑎 ∈ ω
(𝑅1‘𝑎) = ∪
(𝑅1 “ ω)) |
| 39 | | f1eq2 6097 |
. . . . . 6
⊢ (∪ 𝑎 ∈ ω
(𝑅1‘𝑎) = ∪
(𝑅1 “ ω) → (∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪ 𝑎 ∈ ω
(𝑅1‘𝑎)–1-1→ω ↔ ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪
(𝑅1 “ ω)–1-1→ω)) |
| 40 | 37, 38, 39 | mp2b 10 |
. . . . 5
⊢ (∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪ 𝑎 ∈ ω
(𝑅1‘𝑎)–1-1→ω ↔ ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪
(𝑅1 “ ω)–1-1→ω) |
| 41 | 35, 40 | bitr4i 267 |
. . . 4
⊢ (∪ (rec(𝐺, ∅) “ ω):∪ (𝑅1 “ ω)–1-1→ω ↔ ∪ 𝑎 ∈ ω (rec(𝐺, ∅)‘𝑎):∪ 𝑎 ∈ ω
(𝑅1‘𝑎)–1-1→ω) |
| 42 | 30, 41 | mpbir 221 |
. . 3
⊢ ∪ (rec(𝐺, ∅) “ ω):∪ (𝑅1 “ ω)–1-1→ω |
| 43 | | rnuni 5544 |
. . . 4
⊢ ran ∪ (rec(𝐺, ∅) “ ω) = ∪ 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 |
| 44 | | eliun 4524 |
. . . . . 6
⊢ (𝑏 ∈ ∪ 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 ↔ ∃𝑎 ∈ (rec(𝐺, ∅) “ ω)𝑏 ∈ ran 𝑎) |
| 45 | | df-rex 2918 |
. . . . . 6
⊢
(∃𝑎 ∈
(rec(𝐺, ∅) “
ω)𝑏 ∈ ran 𝑎 ↔ ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎)) |
| 46 | | funfn 5918 |
. . . . . . . . . . . 12
⊢ (Fun
rec(𝐺, ∅) ↔
rec(𝐺, ∅) Fn dom
rec(𝐺,
∅)) |
| 47 | 31, 46 | mpbi 220 |
. . . . . . . . . . 11
⊢ rec(𝐺, ∅) Fn dom rec(𝐺, ∅) |
| 48 | | rdgdmlim 7513 |
. . . . . . . . . . . 12
⊢ Lim dom
rec(𝐺,
∅) |
| 49 | | limomss 7070 |
. . . . . . . . . . . 12
⊢ (Lim dom
rec(𝐺, ∅) →
ω ⊆ dom rec(𝐺,
∅)) |
| 50 | 48, 49 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ω
⊆ dom rec(𝐺,
∅) |
| 51 | | fvelimab 6253 |
. . . . . . . . . . 11
⊢
((rec(𝐺, ∅) Fn
dom rec(𝐺, ∅) ∧
ω ⊆ dom rec(𝐺,
∅)) → (𝑎 ∈
(rec(𝐺, ∅) “
ω) ↔ ∃𝑐
∈ ω (rec(𝐺,
∅)‘𝑐) = 𝑎)) |
| 52 | 47, 50, 51 | mp2an 708 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔
∃𝑐 ∈ ω
(rec(𝐺,
∅)‘𝑐) = 𝑎) |
| 53 | 4, 5 | ackbij2lem2 9062 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ω →
(rec(𝐺,
∅)‘𝑐):(𝑅1‘𝑐)–1-1-onto→(card‘(𝑅1‘𝑐))) |
| 54 | | f1ofo 6144 |
. . . . . . . . . . . . . 14
⊢
((rec(𝐺,
∅)‘𝑐):(𝑅1‘𝑐)–1-1-onto→(card‘(𝑅1‘𝑐)) → (rec(𝐺, ∅)‘𝑐):(𝑅1‘𝑐)–onto→(card‘(𝑅1‘𝑐))) |
| 55 | | forn 6118 |
. . . . . . . . . . . . . 14
⊢
((rec(𝐺,
∅)‘𝑐):(𝑅1‘𝑐)–onto→(card‘(𝑅1‘𝑐)) → ran (rec(𝐺, ∅)‘𝑐) =
(card‘(𝑅1‘𝑐))) |
| 56 | 53, 54, 55 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ω → ran
(rec(𝐺,
∅)‘𝑐) =
(card‘(𝑅1‘𝑐))) |
| 57 | | r1fin 8636 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ω →
(𝑅1‘𝑐) ∈ Fin) |
| 58 | | ficardom 8787 |
. . . . . . . . . . . . . . 15
⊢
((𝑅1‘𝑐) ∈ Fin →
(card‘(𝑅1‘𝑐)) ∈ ω) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ω →
(card‘(𝑅1‘𝑐)) ∈ ω) |
| 60 | | ordelss 5739 |
. . . . . . . . . . . . . 14
⊢ ((Ord
ω ∧ (card‘(𝑅1‘𝑐)) ∈ ω) →
(card‘(𝑅1‘𝑐)) ⊆ ω) |
| 61 | 9, 59, 60 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ω →
(card‘(𝑅1‘𝑐)) ⊆ ω) |
| 62 | 56, 61 | eqsstrd 3639 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ ω → ran
(rec(𝐺,
∅)‘𝑐) ⊆
ω) |
| 63 | | rneq 5351 |
. . . . . . . . . . . . 13
⊢
((rec(𝐺,
∅)‘𝑐) = 𝑎 → ran (rec(𝐺, ∅)‘𝑐) = ran 𝑎) |
| 64 | 63 | sseq1d 3632 |
. . . . . . . . . . . 12
⊢
((rec(𝐺,
∅)‘𝑐) = 𝑎 → (ran (rec(𝐺, ∅)‘𝑐) ⊆ ω ↔ ran
𝑎 ⊆
ω)) |
| 65 | 62, 64 | syl5ibcom 235 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ ω →
((rec(𝐺,
∅)‘𝑐) = 𝑎 → ran 𝑎 ⊆ ω)) |
| 66 | 65 | rexlimiv 3027 |
. . . . . . . . . 10
⊢
(∃𝑐 ∈
ω (rec(𝐺,
∅)‘𝑐) = 𝑎 → ran 𝑎 ⊆ ω) |
| 67 | 52, 66 | sylbi 207 |
. . . . . . . . 9
⊢ (𝑎 ∈ (rec(𝐺, ∅) “ ω) → ran 𝑎 ⊆
ω) |
| 68 | 67 | sselda 3603 |
. . . . . . . 8
⊢ ((𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) → 𝑏 ∈ ω) |
| 69 | 68 | exlimiv 1858 |
. . . . . . 7
⊢
(∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) → 𝑏 ∈ ω) |
| 70 | | peano2 7086 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → suc 𝑏 ∈
ω) |
| 71 | | fnfvima 6496 |
. . . . . . . . . 10
⊢
((rec(𝐺, ∅) Fn
dom rec(𝐺, ∅) ∧
ω ⊆ dom rec(𝐺,
∅) ∧ suc 𝑏 ∈
ω) → (rec(𝐺,
∅)‘suc 𝑏)
∈ (rec(𝐺, ∅)
“ ω)) |
| 72 | 47, 50, 71 | mp3an12 1414 |
. . . . . . . . 9
⊢ (suc
𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏) ∈ (rec(𝐺, ∅) “
ω)) |
| 73 | 70, 72 | syl 17 |
. . . . . . . 8
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏) ∈ (rec(𝐺, ∅) “
ω)) |
| 74 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
| 75 | | cardnn 8789 |
. . . . . . . . . . . 12
⊢ (suc
𝑏 ∈ ω →
(card‘suc 𝑏) = suc
𝑏) |
| 76 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢
(𝑅1‘suc 𝑏) ∈ V |
| 77 | 36 | simpri 478 |
. . . . . . . . . . . . . . . . 17
⊢ Lim dom
𝑅1 |
| 78 | | limomss 7070 |
. . . . . . . . . . . . . . . . 17
⊢ (Lim dom
𝑅1 → ω ⊆ dom
𝑅1) |
| 79 | 77, 78 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ω
⊆ dom 𝑅1 |
| 80 | 79 | sseli 3599 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ∈ dom
𝑅1) |
| 81 | | onssr1 8694 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑏 ∈ dom
𝑅1 → suc 𝑏 ⊆ (𝑅1‘suc
𝑏)) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ⊆
(𝑅1‘suc 𝑏)) |
| 83 | | ssdomg 8001 |
. . . . . . . . . . . . . 14
⊢
((𝑅1‘suc 𝑏) ∈ V → (suc 𝑏 ⊆ (𝑅1‘suc
𝑏) → suc 𝑏 ≼
(𝑅1‘suc 𝑏))) |
| 84 | 76, 82, 83 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ≼
(𝑅1‘suc 𝑏)) |
| 85 | | nnon 7071 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ∈
On) |
| 86 | | onenon 8775 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑏 ∈ On → suc
𝑏 ∈ dom
card) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ∈ dom
card) |
| 88 | | r1fin 8636 |
. . . . . . . . . . . . . . 15
⊢ (suc
𝑏 ∈ ω →
(𝑅1‘suc 𝑏) ∈ Fin) |
| 89 | | finnum 8774 |
. . . . . . . . . . . . . . 15
⊢
((𝑅1‘suc 𝑏) ∈ Fin →
(𝑅1‘suc 𝑏) ∈ dom card) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑏 ∈ ω →
(𝑅1‘suc 𝑏) ∈ dom card) |
| 91 | | carddom2 8803 |
. . . . . . . . . . . . . 14
⊢ ((suc
𝑏 ∈ dom card ∧
(𝑅1‘suc 𝑏) ∈ dom card) → ((card‘suc
𝑏) ⊆
(card‘(𝑅1‘suc 𝑏)) ↔ suc 𝑏 ≼ (𝑅1‘suc
𝑏))) |
| 92 | 87, 90, 91 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (suc
𝑏 ∈ ω →
((card‘suc 𝑏) ⊆
(card‘(𝑅1‘suc 𝑏)) ↔ suc 𝑏 ≼ (𝑅1‘suc
𝑏))) |
| 93 | 84, 92 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (suc
𝑏 ∈ ω →
(card‘suc 𝑏) ⊆
(card‘(𝑅1‘suc 𝑏))) |
| 94 | 75, 93 | eqsstr3d 3640 |
. . . . . . . . . . 11
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ⊆
(card‘(𝑅1‘suc 𝑏))) |
| 95 | 70, 94 | syl 17 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ω → suc 𝑏 ⊆
(card‘(𝑅1‘suc 𝑏))) |
| 96 | | sucssel 5819 |
. . . . . . . . . 10
⊢ (𝑏 ∈ V → (suc 𝑏 ⊆
(card‘(𝑅1‘suc 𝑏)) → 𝑏 ∈
(card‘(𝑅1‘suc 𝑏)))) |
| 97 | 74, 95, 96 | mpsyl 68 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → 𝑏 ∈
(card‘(𝑅1‘suc 𝑏))) |
| 98 | 4, 5 | ackbij2lem2 9062 |
. . . . . . . . . 10
⊢ (suc
𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏))) |
| 99 | | f1ofo 6144 |
. . . . . . . . . 10
⊢
((rec(𝐺,
∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–onto→(card‘(𝑅1‘suc
𝑏))) |
| 100 | | forn 6118 |
. . . . . . . . . 10
⊢
((rec(𝐺,
∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–onto→(card‘(𝑅1‘suc
𝑏)) → ran (rec(𝐺, ∅)‘suc 𝑏) =
(card‘(𝑅1‘suc 𝑏))) |
| 101 | 70, 98, 99, 100 | 4syl 19 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω → ran
(rec(𝐺, ∅)‘suc
𝑏) =
(card‘(𝑅1‘suc 𝑏))) |
| 102 | 97, 101 | eleqtrrd 2704 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏)) |
| 103 | | fvex 6201 |
. . . . . . . . 9
⊢
(rec(𝐺,
∅)‘suc 𝑏)
∈ V |
| 104 | | eleq1 2689 |
. . . . . . . . . 10
⊢ (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑎 ∈ (rec(𝐺, ∅) “ ω) ↔
(rec(𝐺, ∅)‘suc
𝑏) ∈ (rec(𝐺, ∅) “
ω))) |
| 105 | | rneq 5351 |
. . . . . . . . . . 11
⊢ (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → ran 𝑎 = ran (rec(𝐺, ∅)‘suc 𝑏)) |
| 106 | 105 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑏 ∈ ran 𝑎 ↔ 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏))) |
| 107 | 104, 106 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑎 = (rec(𝐺, ∅)‘suc 𝑏) → ((𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) ↔ ((rec(𝐺, ∅)‘suc 𝑏) ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran (rec(𝐺, ∅)‘suc 𝑏)))) |
| 108 | 103, 107 | spcev 3300 |
. . . . . . . 8
⊢
(((rec(𝐺,
∅)‘suc 𝑏)
∈ (rec(𝐺, ∅)
“ ω) ∧ 𝑏
∈ ran (rec(𝐺,
∅)‘suc 𝑏))
→ ∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎)) |
| 109 | 73, 102, 108 | syl2anc 693 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎)) |
| 110 | 69, 109 | impbii 199 |
. . . . . 6
⊢
(∃𝑎(𝑎 ∈ (rec(𝐺, ∅) “ ω) ∧ 𝑏 ∈ ran 𝑎) ↔ 𝑏 ∈ ω) |
| 111 | 44, 45, 110 | 3bitri 286 |
. . . . 5
⊢ (𝑏 ∈ ∪ 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 ↔ 𝑏 ∈ ω) |
| 112 | 111 | eqriv 2619 |
. . . 4
⊢ ∪ 𝑎 ∈ (rec(𝐺, ∅) “ ω)ran 𝑎 = ω |
| 113 | 43, 112 | eqtri 2644 |
. . 3
⊢ ran ∪ (rec(𝐺, ∅) “ ω) =
ω |
| 114 | | dff1o5 6146 |
. . 3
⊢ (∪ (rec(𝐺, ∅) “ ω):∪ (𝑅1 “ ω)–1-1-onto→ω ↔ (∪
(rec(𝐺, ∅) “
ω):∪ (𝑅1 “
ω)–1-1→ω ∧ ran
∪ (rec(𝐺, ∅) “ ω) =
ω)) |
| 115 | 42, 113, 114 | mpbir2an 955 |
. 2
⊢ ∪ (rec(𝐺, ∅) “ ω):∪ (𝑅1 “ ω)–1-1-onto→ω |
| 116 | | ackbij.h |
. . 3
⊢ 𝐻 = ∪
(rec(𝐺, ∅) “
ω) |
| 117 | | f1oeq1 6127 |
. . 3
⊢ (𝐻 = ∪
(rec(𝐺, ∅) “
ω) → (𝐻:∪ (𝑅1 “ ω)–1-1-onto→ω ↔ ∪
(rec(𝐺, ∅) “
ω):∪ (𝑅1 “
ω)–1-1-onto→ω)) |
| 118 | 116, 117 | ax-mp 5 |
. 2
⊢ (𝐻:∪
(𝑅1 “ ω)–1-1-onto→ω ↔ ∪
(rec(𝐺, ∅) “
ω):∪ (𝑅1 “
ω)–1-1-onto→ω) |
| 119 | 115, 118 | mpbir 221 |
1
⊢ 𝐻:∪
(𝑅1 “ ω)–1-1-onto→ω |