MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem15 Structured version   Visualization version   GIF version

Theorem ackbij1lem15 9056
Description: Lemma for ackbij1 9060. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem15 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Distinct variable groups:   𝐹,𝑐,𝑥,𝑦   𝐴,𝑐,𝑥,𝑦   𝐵,𝑐,𝑥,𝑦

Proof of Theorem ackbij1lem15
StepHypRef Expression
1 simpr1 1067 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ ω)
2 ackbij1lem3 9044 . . . . . . 7 (𝑐 ∈ ω → 𝑐 ∈ (𝒫 ω ∩ Fin))
31, 2syl 17 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ (𝒫 ω ∩ Fin))
4 simpr3 1069 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ 𝑐𝐵)
5 ackbij1lem1 9042 . . . . . . . 8 𝑐𝐵 → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
7 inss2 3834 . . . . . . 7 (𝐵𝑐) ⊆ 𝑐
86, 7syl6eqss 3655 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) ⊆ 𝑐)
9 ackbij.f . . . . . . 7 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109ackbij1lem12 9053 . . . . . 6 ((𝑐 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∩ suc 𝑐) ⊆ 𝑐) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
113, 8, 10syl2anc 693 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
129ackbij1lem10 9051 . . . . . . . . 9 𝐹:(𝒫 ω ∩ Fin)⟶ω
1312ffvelrni 6358 . . . . . . . 8 (𝑐 ∈ (𝒫 ω ∩ Fin) → (𝐹𝑐) ∈ ω)
14 nnon 7071 . . . . . . . 8 ((𝐹𝑐) ∈ ω → (𝐹𝑐) ∈ On)
15 onpsssuc 7019 . . . . . . . 8 ((𝐹𝑐) ∈ On → (𝐹𝑐) ⊊ suc (𝐹𝑐))
163, 13, 14, 154syl 19 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ suc (𝐹𝑐))
179ackbij1lem14 9055 . . . . . . . . 9 (𝑐 ∈ ω → (𝐹‘{𝑐}) = suc (𝐹𝑐))
181, 17syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) = suc (𝐹𝑐))
1918psseq2d 3700 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ((𝐹𝑐) ⊊ (𝐹‘{𝑐}) ↔ (𝐹𝑐) ⊊ suc (𝐹𝑐)))
2016, 19mpbird 247 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘{𝑐}))
21 simpll 790 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝐴 ∈ (𝒫 ω ∩ Fin))
22 inss1 3833 . . . . . . . 8 (𝐴 ∩ suc 𝑐) ⊆ 𝐴
239ackbij1lem11 9052 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ suc 𝑐) ⊆ 𝐴) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
2421, 22, 23sylancl 694 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
25 ssun1 3776 . . . . . . . 8 {𝑐} ⊆ ({𝑐} ∪ (𝐴𝑐))
26 simpr2 1068 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐𝐴)
27 ackbij1lem2 9043 . . . . . . . . 9 (𝑐𝐴 → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2826, 27syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2925, 28syl5sseqr 3654 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → {𝑐} ⊆ (𝐴 ∩ suc 𝑐))
309ackbij1lem12 9053 . . . . . . 7 (((𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin) ∧ {𝑐} ⊆ (𝐴 ∩ suc 𝑐)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3124, 29, 30syl2anc 693 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3220, 31psssstrd 3716 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3311, 32sspsstrd 3715 . . . 4 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3433pssned 3705 . . 3 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ≠ (𝐹‘(𝐴 ∩ suc 𝑐)))
3534necomd 2849 . 2 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐴 ∩ suc 𝑐)) ≠ (𝐹‘(𝐵 ∩ suc 𝑐)))
3635neneqd 2799 1 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cun 3572  cin 3573  wss 3574  wpss 3575  𝒫 cpw 4158  {csn 4177   ciun 4520  cmpt 4729   × cxp 5112  Oncon0 5723  suc csuc 5725  cfv 5888  ωcom 7065  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990
This theorem is referenced by:  ackbij1lem16  9057
  Copyright terms: Public domain W3C validator