![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem1 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 9065. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem1 | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 5729 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | ineq2i 3811 | . . 3 ⊢ (𝐵 ∩ suc 𝐴) = (𝐵 ∩ (𝐴 ∪ {𝐴})) |
3 | indi 3873 | . . 3 ⊢ (𝐵 ∩ (𝐴 ∪ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) | |
4 | 2, 3 | eqtri 2644 | . 2 ⊢ (𝐵 ∩ suc 𝐴) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) |
5 | disjsn 4246 | . . . . 5 ⊢ ((𝐵 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐵) | |
6 | 5 | biimpri 218 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ {𝐴}) = ∅) |
7 | 6 | uneq2d 3767 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = ((𝐵 ∩ 𝐴) ∪ ∅)) |
8 | un0 3967 | . . 3 ⊢ ((𝐵 ∩ 𝐴) ∪ ∅) = (𝐵 ∩ 𝐴) | |
9 | 7, 8 | syl6eq 2672 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐵 ∩ 𝐴) ∪ (𝐵 ∩ {𝐴})) = (𝐵 ∩ 𝐴)) |
10 | 4, 9 | syl5eq 2668 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 ∩ cin 3573 ∅c0 3915 {csn 4177 suc csuc 5725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-nul 3916 df-sn 4178 df-suc 5729 |
This theorem is referenced by: ackbij1lem15 9056 ackbij1lem16 9057 |
Copyright terms: Public domain | W3C validator |