![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alinexa | Structured version Visualization version GIF version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
alinexa | ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnang 1769 | . 2 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑 ∧ 𝜓)) | |
2 | alnex 1706 | . 2 ⊢ (∀𝑥 ¬ (𝜑 ∧ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) | |
3 | 1, 2 | bitri 264 | 1 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
This theorem is referenced by: equs3 1875 ralnexOLD 2993 r2exlem 3059 zfregs2 8609 ac6n 9307 nnunb 11288 alexsubALTlem3 21853 nmobndseqi 27634 bj-exnalimn 32610 bj-ssbn 32641 frege124d 38053 zfregs2VD 39076 |
Copyright terms: Public domain | W3C validator |