MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6n Structured version   Visualization version   GIF version

Theorem ac6n 9307
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 9306. (Contributed by NM, 10-Jun-2007.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6n (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6n
StepHypRef Expression
1 ac6s.1 . . . 4 𝐴 ∈ V
2 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
32notbid 308 . . . 4 (𝑦 = (𝑓𝑥) → (¬ 𝜑 ↔ ¬ 𝜓))
41, 3ac6s 9306 . . 3 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
54con3i 150 . 2 (¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓) → ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
6 dfrex2 2996 . . . . 5 (∃𝑥𝐴 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓)
76imbi2i 326 . . . 4 ((𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ (𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
87albii 1747 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
9 alinexa 1770 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
108, 9bitri 264 . 2 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
11 dfral2 2994 . . . 4 (∀𝑦𝐵 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜑)
1211rexbii 3041 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑)
13 rexnal 2995 . . 3 (∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
1412, 13bitri 264 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
155, 10, 143imtr4i 281 1 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-en 7956  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939
This theorem is referenced by:  nmobndseqiALT  27635
  Copyright terms: Public domain W3C validator