MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregs2 Structured version   Visualization version   GIF version

Theorem zfregs2 8609
Description: Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Wolf Lammen, 27-Sep-2013.)
Assertion
Ref Expression
zfregs2 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zfregs2
StepHypRef Expression
1 zfregs 8608 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
2 incom 3805 . . . . . . . 8 (𝑥𝐴) = (𝐴𝑥)
32eqeq1i 2627 . . . . . . 7 ((𝑥𝐴) = ∅ ↔ (𝐴𝑥) = ∅)
43rexbii 3041 . . . . . 6 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 (𝐴𝑥) = ∅)
51, 4sylib 208 . . . . 5 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝐴𝑥) = ∅)
6 disj1 4019 . . . . . 6 ((𝐴𝑥) = ∅ ↔ ∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
76rexbii 3041 . . . . 5 (∃𝑥𝐴 (𝐴𝑥) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
85, 7sylib 208 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
9 alinexa 1770 . . . . 5 (∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
109rexbii 3041 . . . 4 (∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
118, 10sylib 208 . . 3 (𝐴 ≠ ∅ → ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
12 dfrex2 2996 . . 3 (∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1311, 12sylib 208 . 2 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
14 notnotb 304 . . 3 (∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1514ralbii 2980 . 2 (∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1613, 15sylnibr 319 1 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  cin 3573  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  en3lpVD  39080
  Copyright terms: Public domain W3C validator