![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atandm | Structured version Visualization version GIF version |
Description: Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
atandm | ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3584 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i})) | |
2 | elprg 4196 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ {-i, i} ↔ (𝐴 = -i ∨ 𝐴 = i))) | |
3 | 2 | notbid 308 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))) |
4 | neanior 2886 | . . . . 5 ⊢ ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)) | |
5 | 3, 4 | syl6bbr 278 | . . . 4 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
6 | 5 | pm5.32i 669 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
7 | 1, 6 | bitri 264 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
8 | ovex 6678 | . . . 4 ⊢ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))) ∈ V | |
9 | df-atan 24594 | . . . 4 ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | |
10 | 8, 9 | dmmpti 6023 | . . 3 ⊢ dom arctan = (ℂ ∖ {-i, i}) |
11 | 10 | eleq2i 2693 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ 𝐴 ∈ (ℂ ∖ {-i, i})) |
12 | 3anass 1042 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) | |
13 | 7, 11, 12 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 {cpr 4179 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 1c1 9937 ici 9938 + caddc 9939 · cmul 9941 − cmin 10266 -cneg 10267 / cdiv 10684 2c2 11070 logclog 24301 arctancatan 24591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ov 6653 df-atan 24594 |
This theorem is referenced by: atandm2 24604 atandm3 24605 atancj 24637 2efiatan 24645 tanatan 24646 dvatan 24662 |
Copyright terms: Public domain | W3C validator |