![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atl0dm | Structured version Visualization version GIF version |
Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
atl01dm.b | ⊢ 𝐵 = (Base‘𝐾) |
atl01dm.u | ⊢ 𝑈 = (lub‘𝐾) |
atl01dm.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
atl0dm | ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl01dm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atl01dm.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
3 | eqid 2622 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
4 | eqid 2622 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
5 | eqid 2622 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isatl 34586 | . 2 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ (0.‘𝐾) → ∃𝑦 ∈ (Atoms‘𝐾)𝑦(le‘𝐾)𝑥))) |
7 | 6 | simp2bi 1077 | 1 ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 dom cdm 5114 ‘cfv 5888 Basecbs 15857 lecple 15948 lubclub 16942 glbcglb 16943 0.cp0 17037 Latclat 17045 Atomscatm 34550 AtLatcal 34551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-atl 34585 |
This theorem is referenced by: atl0cl 34590 atl0le 34591 |
Copyright terms: Public domain | W3C validator |