Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isatl Structured version   Visualization version   GIF version

Theorem isatl 34586
Description: The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isatlat.b 𝐵 = (Base‘𝐾)
isatlat.g 𝐺 = (glb‘𝐾)
isatlat.l = (le‘𝐾)
isatlat.z 0 = (0.‘𝐾)
isatlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isatl (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem isatl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isatlat.b . . . . . 6 𝐵 = (Base‘𝐾)
31, 2syl6eqr 2674 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6191 . . . . . . 7 (𝑘 = 𝐾 → (glb‘𝑘) = (glb‘𝐾))
5 isatlat.g . . . . . . 7 𝐺 = (glb‘𝐾)
64, 5syl6eqr 2674 . . . . . 6 (𝑘 = 𝐾 → (glb‘𝑘) = 𝐺)
76dmeqd 5326 . . . . 5 (𝑘 = 𝐾 → dom (glb‘𝑘) = dom 𝐺)
83, 7eleq12d 2695 . . . 4 (𝑘 = 𝐾 → ((Base‘𝑘) ∈ dom (glb‘𝑘) ↔ 𝐵 ∈ dom 𝐺))
9 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
10 isatlat.z . . . . . . . 8 0 = (0.‘𝐾)
119, 10syl6eqr 2674 . . . . . . 7 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
1211neeq2d 2854 . . . . . 6 (𝑘 = 𝐾 → (𝑥 ≠ (0.‘𝑘) ↔ 𝑥0 ))
13 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
14 isatlat.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
1513, 14syl6eqr 2674 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
16 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
17 isatlat.l . . . . . . . . 9 = (le‘𝐾)
1816, 17syl6eqr 2674 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1918breqd 4664 . . . . . . 7 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑥𝑦 𝑥))
2015, 19rexeqbidv 3153 . . . . . 6 (𝑘 = 𝐾 → (∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥 ↔ ∃𝑦𝐴 𝑦 𝑥))
2112, 20imbi12d 334 . . . . 5 (𝑘 = 𝐾 → ((𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
223, 21raleqbidv 3152 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥) ↔ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
238, 22anbi12d 747 . . 3 (𝑘 = 𝐾 → (((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥)) ↔ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
24 df-atl 34585 . . 3 AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑦 ∈ (Atoms‘𝑘)𝑦(le‘𝑘)𝑥))}
2523, 24elrab2 3366 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
26 3anass 1042 . 2 ((𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)) ↔ (𝐾 ∈ Lat ∧ (𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥))))
2725, 26bitr4i 267 1 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥0 → ∃𝑦𝐴 𝑦 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913   class class class wbr 4653  dom cdm 5114  cfv 5888  Basecbs 15857  lecple 15948  glbcglb 16943  0.cp0 17037  Latclat 17045  Atomscatm 34550  AtLatcal 34551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-atl 34585
This theorem is referenced by:  atllat  34587  atl0dm  34589  atlex  34603
  Copyright terms: Public domain W3C validator