Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0le Structured version   Visualization version   GIF version

Theorem atl0le 34591
Description: Orthoposet zero is less than or equal to any element. (ch0le 28300 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
atl0le.b 𝐵 = (Base‘𝐾)
atl0le.l = (le‘𝐾)
atl0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atl0le ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)

Proof of Theorem atl0le
StepHypRef Expression
1 atl0le.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2622 . 2 (glb‘𝐾) = (glb‘𝐾)
3 atl0le.l . 2 = (le‘𝐾)
4 atl0le.z . 2 0 = (0.‘𝐾)
5 simpl 473 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
6 simpr 477 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2622 . . . 4 (lub‘𝐾) = (lub‘𝐾)
81, 7, 2atl0dm 34589 . . 3 (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾))
98adantr 481 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐵 ∈ dom (glb‘𝐾))
101, 2, 3, 4, 5, 6, 9p0le 17043 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  dom cdm 5114  cfv 5888  Basecbs 15857  lecple 15948  lubclub 16942  glbcglb 16943  0.cp0 17037  AtLatcal 34551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-glb 16975  df-p0 17039  df-atl 34585
This theorem is referenced by:  atlle0  34592  atlltn0  34593  atcvreq0  34601  trlval4  35475  dian0  36328  dia0  36341  dihmeetlem4preN  36595
  Copyright terms: Public domain W3C validator