MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toprntopon Structured version   Visualization version   GIF version

Theorem toprntopon 20729
Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
toprntopon Top = ran TopOn

Proof of Theorem toprntopon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 20723 . . . . . 6 (𝑥 ∈ Top ↔ 𝑥 ∈ (TopOn‘ 𝑥))
21biimpi 206 . . . . 5 (𝑥 ∈ Top → 𝑥 ∈ (TopOn‘ 𝑥))
3 fvex 6201 . . . . . 6 (TopOn‘ 𝑥) ∈ V
4 eleq2 2690 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑥𝑦𝑥 ∈ (TopOn‘ 𝑥)))
5 eleq1 2689 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑦 ∈ ran TopOn ↔ (TopOn‘ 𝑥) ∈ ran TopOn))
64, 5anbi12d 747 . . . . . . 7 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn)))
7 simpl 473 . . . . . . . . 9 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) → 𝑥 ∈ (TopOn‘ 𝑥))
8 fntopon 20728 . . . . . . . . . . . 12 TopOn Fn V
9 vuniex 6954 . . . . . . . . . . . 12 𝑥 ∈ V
108, 9pm3.2i 471 . . . . . . . . . . 11 (TopOn Fn V ∧ 𝑥 ∈ V)
11 fnfvelrn 6356 . . . . . . . . . . 11 ((TopOn Fn V ∧ 𝑥 ∈ V) → (TopOn‘ 𝑥) ∈ ran TopOn)
1210, 11ax-mp 5 . . . . . . . . . 10 (TopOn‘ 𝑥) ∈ ran TopOn
1312jctr 565 . . . . . . . . 9 (𝑥 ∈ (TopOn‘ 𝑥) → (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn))
147, 13impbii 199 . . . . . . . 8 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥))
1514a1i 11 . . . . . . 7 (𝑦 = (TopOn‘ 𝑥) → ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥)))
166, 15bitrd 268 . . . . . 6 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥)))
173, 16spcev 3300 . . . . 5 (𝑥 ∈ (TopOn‘ 𝑥) → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
182, 17syl 17 . . . 4 (𝑥 ∈ Top → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
19 funtopon 20725 . . . . . . . . . 10 Fun TopOn
20 elrnrexdm 6363 . . . . . . . . . 10 (Fun TopOn → (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧)))
2119, 20ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧))
22 rexex 3002 . . . . . . . . 9 (∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧) → ∃𝑧 𝑦 = (TopOn‘𝑧))
2321, 22syl 17 . . . . . . . 8 (𝑦 ∈ ran TopOn → ∃𝑧 𝑦 = (TopOn‘𝑧))
2423anim2i 593 . . . . . . 7 ((𝑥𝑦𝑦 ∈ ran TopOn) → (𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)))
25 19.42v 1918 . . . . . . . . 9 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) ↔ (𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)))
2625biimpri 218 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)))
27 eqimss 3657 . . . . . . . . . . . 12 (𝑦 = (TopOn‘𝑧) → 𝑦 ⊆ (TopOn‘𝑧))
2827sseld 3602 . . . . . . . . . . 11 (𝑦 = (TopOn‘𝑧) → (𝑥𝑦𝑥 ∈ (TopOn‘𝑧)))
2928com12 32 . . . . . . . . . 10 (𝑥𝑦 → (𝑦 = (TopOn‘𝑧) → 𝑥 ∈ (TopOn‘𝑧)))
3029imp 445 . . . . . . . . 9 ((𝑥𝑦𝑦 = (TopOn‘𝑧)) → 𝑥 ∈ (TopOn‘𝑧))
3130eximi 1762 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
3226, 31syl 17 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
3324, 32syl 17 . . . . . 6 ((𝑥𝑦𝑦 ∈ ran TopOn) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
34 topontop 20718 . . . . . . . 8 (𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
3534eximi 1762 . . . . . . 7 (∃𝑧 𝑥 ∈ (TopOn‘𝑧) → ∃𝑧 𝑥 ∈ Top)
36 ax5e 1841 . . . . . . 7 (∃𝑧 𝑥 ∈ Top → 𝑥 ∈ Top)
3735, 36syl 17 . . . . . 6 (∃𝑧 𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
3833, 37syl 17 . . . . 5 ((𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3938exlimiv 1858 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
4018, 39impbii 199 . . 3 (𝑥 ∈ Top ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
41 eluni 4439 . . . 4 (𝑥 ran TopOn ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
4241bicomi 214 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn) ↔ 𝑥 ran TopOn)
4340, 42bitri 264 . 2 (𝑥 ∈ Top ↔ 𝑥 ran TopOn)
4443eqriv 2619 1 Top = ran TopOn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  Vcvv 3200   cuni 4436  dom cdm 5114  ran crn 5115  Fun wfun 5882   Fn wfn 5883  cfv 5888  Topctop 20698  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-topon 20716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator