| Step | Hyp | Ref
| Expression |
| 1 | | fneq2 5980 |
. . . 4
⊢ (𝑤 = ∅ → (𝑓 Fn 𝑤 ↔ 𝑓 Fn ∅)) |
| 2 | | raleq 3138 |
. . . 4
⊢ (𝑤 = ∅ → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 3 | 1, 2 | anbi12d 747 |
. . 3
⊢ (𝑤 = ∅ → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 4 | 3 | exbidv 1850 |
. 2
⊢ (𝑤 = ∅ → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 5 | | fneq2 5980 |
. . . 4
⊢ (𝑤 = 𝑦 → (𝑓 Fn 𝑤 ↔ 𝑓 Fn 𝑦)) |
| 6 | | raleq 3138 |
. . . 4
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 7 | 5, 6 | anbi12d 747 |
. . 3
⊢ (𝑤 = 𝑦 → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 8 | 7 | exbidv 1850 |
. 2
⊢ (𝑤 = 𝑦 → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 9 | | fneq2 5980 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑓 Fn 𝑤 ↔ 𝑓 Fn (𝑦 ∪ {𝑧}))) |
| 10 | | raleq 3138 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 11 | 9, 10 | anbi12d 747 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 12 | 11 | exbidv 1850 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 13 | | fneq2 5980 |
. . . 4
⊢ (𝑤 = 𝐴 → (𝑓 Fn 𝑤 ↔ 𝑓 Fn 𝐴)) |
| 14 | | raleq 3138 |
. . . 4
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 15 | 13, 14 | anbi12d 747 |
. . 3
⊢ (𝑤 = 𝐴 → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 16 | 15 | exbidv 1850 |
. 2
⊢ (𝑤 = 𝐴 → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 17 | | eqid 2622 |
. . . . . 6
⊢ ∅ =
∅ |
| 18 | | fn0 6011 |
. . . . . 6
⊢ (∅
Fn ∅ ↔ ∅ = ∅) |
| 19 | 17, 18 | mpbir 221 |
. . . . 5
⊢ ∅
Fn ∅ |
| 20 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 21 | | fneq1 5979 |
. . . . . 6
⊢ (𝑓 = ∅ → (𝑓 Fn ∅ ↔ ∅ Fn
∅)) |
| 22 | 20, 21 | spcev 3300 |
. . . . 5
⊢ (∅
Fn ∅ → ∃𝑓
𝑓 Fn
∅) |
| 23 | 19, 22 | ax-mp 5 |
. . . 4
⊢
∃𝑓 𝑓 Fn ∅ |
| 24 | | ral0 4076 |
. . . 4
⊢
∀𝑥 ∈
∅ (𝑥 ≠ ∅
→ (𝑓‘𝑥) ∈ 𝑥) |
| 25 | 23, 24 | pm3.2i 471 |
. . 3
⊢
(∃𝑓 𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 26 | 25 | exan 1788 |
. 2
⊢
∃𝑓(𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 27 | | dffn2 6047 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn 𝑦 ↔ 𝑓:𝑦⟶V) |
| 28 | 27 | biimpi 206 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝑦 → 𝑓:𝑦⟶V) |
| 29 | 28 | ad2antrl 764 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑓:𝑦⟶V) |
| 30 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑧 ∈ V) |
| 32 | | simpllr 799 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ¬ 𝑧 ∈ 𝑦) |
| 33 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑤 ∈ V) |
| 35 | | fsnunf 6451 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝑦⟶V ∧ (𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑤 ∈ V) → (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
| 36 | 29, 31, 32, 34, 35 | syl121anc 1331 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
| 37 | | dffn2 6047 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ↔ (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
| 38 | 36, 37 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → (𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧})) |
| 39 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑧 = ∅) |
| 40 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 41 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) |
| 42 | | nfra1 2941 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) |
| 43 | 41, 42 | nfan 1828 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 44 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) |
| 45 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → ¬ 𝑧 ∈ 𝑦) |
| 46 | 45 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ¬ 𝑧 ∈ 𝑦) |
| 47 | 46 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ¬ 𝑧 ∈ 𝑦) |
| 48 | 44, 47 | jca 554 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦)) |
| 49 | | nelne2 2891 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦) → 𝑥 ≠ 𝑧) |
| 50 | 49 | necomd 2849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦) → 𝑧 ≠ 𝑥) |
| 51 | 48, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑧 ≠ 𝑥) |
| 52 | | fvunsn 6445 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ≠ 𝑥 → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
| 54 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 56 | | simplr 792 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ≠ ∅) |
| 57 | | neeq1 2856 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑥 → (𝑢 ≠ ∅ ↔ 𝑥 ≠ ∅)) |
| 58 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝑥 → (𝑓‘𝑢) = (𝑓‘𝑥)) |
| 59 | 58 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑥 → ((𝑓‘𝑢) ∈ 𝑢 ↔ (𝑓‘𝑥) ∈ 𝑢)) |
| 60 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑥 → ((𝑓‘𝑥) ∈ 𝑢 ↔ (𝑓‘𝑥) ∈ 𝑥)) |
| 61 | 59, 60 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑥 → ((𝑓‘𝑢) ∈ 𝑢 ↔ (𝑓‘𝑥) ∈ 𝑥)) |
| 62 | 57, 61 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑥 → ((𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢) ↔ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 63 | 62 | cbvralv 3171 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑢 ∈
𝑦 (𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 64 | 62 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑦 → (∀𝑢 ∈ 𝑦 (𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 65 | 63, 64 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝑦 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 66 | 44, 55, 56, 65 | syl3c 66 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑓‘𝑥) ∈ 𝑥) |
| 67 | 53, 66 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
| 68 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑧 = ∅) |
| 69 | 68 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑧 = ∅) |
| 70 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 ∈ {𝑧}) |
| 71 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 ≠ ∅) |
| 72 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑧} → 𝑥 = 𝑧) |
| 73 | 72 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑥 = 𝑧) |
| 74 | | simp1 1061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑧 = ∅) |
| 75 | 73, 74 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑥 = ∅) |
| 76 | | simp3 1063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅) |
| 77 | 75, 76 | pm2.21ddne 2878 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
| 78 | 69, 70, 71, 77 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
| 79 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝑦 ∪ {𝑧})) |
| 80 | | elun 3753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 ∈ {𝑧})) |
| 81 | 79, 80 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → (𝑥 ∈ 𝑦 ∨ 𝑥 ∈ {𝑧})) |
| 82 | 67, 78, 81 | mpjaodan 827 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
| 83 | 82 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
| 84 | 83 | ex 450 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → (𝑥 ∈ (𝑦 ∪ {𝑧}) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
| 85 | 43, 84 | ralrimi 2957 |
. . . . . . . . . . . . 13
⊢ (((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
| 86 | 39, 32, 40, 85 | syl21anc 1325 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
| 87 | 38, 86 | jca 554 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
| 88 | 87 | ex 450 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → ((𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)))) |
| 89 | 88 | eximdv 1846 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑓((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)))) |
| 90 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑓 ∈ V |
| 91 | | snex 4908 |
. . . . . . . . . . . 12
⊢
{〈𝑧, 𝑤〉} ∈
V |
| 92 | 90, 91 | unex 6956 |
. . . . . . . . . . 11
⊢ (𝑓 ∪ {〈𝑧, 𝑤〉}) ∈ V |
| 93 | | fneq1 5979 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → (𝑔 Fn (𝑦 ∪ {𝑧}) ↔ (𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}))) |
| 94 | | fveq1 6190 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → (𝑔‘𝑥) = ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥)) |
| 95 | 94 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → ((𝑔‘𝑥) ∈ 𝑥 ↔ ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
| 96 | 95 | imbi2d 330 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) ↔ (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
| 97 | 96 | ralbidv 2986 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
| 98 | 93, 97 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → ((𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ↔ ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)))) |
| 99 | 92, 98 | spcev 3300 |
. . . . . . . . . 10
⊢ (((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 100 | 99 | eximi 1762 |
. . . . . . . . 9
⊢
(∃𝑓((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) → ∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 101 | 89, 100 | syl6 35 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
| 102 | | ax5e 1841 |
. . . . . . . 8
⊢
(∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 103 | 101, 102 | syl6 35 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
| 104 | 103 | imp 445 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 105 | 104 | an32s 846 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ 𝑧 = ∅) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 106 | | fneq1 5979 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (𝑓 Fn (𝑦 ∪ {𝑧}) ↔ 𝑔 Fn (𝑦 ∪ {𝑧}))) |
| 107 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) |
| 108 | 107 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑥) ∈ 𝑥)) |
| 109 | 108 | imbi2d 330 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 110 | 109 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 111 | 106, 110 | anbi12d 747 |
. . . . . 6
⊢ (𝑓 = 𝑔 → ((𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
| 112 | 111 | cbvexv 2275 |
. . . . 5
⊢
(∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 113 | 105, 112 | sylibr 224 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ 𝑧 = ∅) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 114 | | simpllr 799 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ¬ 𝑧 ∈ 𝑦) |
| 115 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ¬ 𝑧 = ∅) |
| 116 | | neq0 3930 |
. . . . . . . 8
⊢ (¬
𝑧 = ∅ ↔
∃𝑤 𝑤 ∈ 𝑧) |
| 117 | 115, 116 | sylib 208 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ∃𝑤 𝑤 ∈ 𝑧) |
| 118 | | simplr 792 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 119 | 117, 118 | jca 554 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 120 | 114, 119 | jca 554 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → (¬ 𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))))) |
| 121 | | eeanv 2182 |
. . . . . . . . 9
⊢
(∃𝑤∃𝑓(𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ↔ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 122 | | simprrl 804 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑓 Fn 𝑦) |
| 123 | 122, 27 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑓:𝑦⟶V) |
| 124 | 30 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑧 ∈ V) |
| 125 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ¬ 𝑧 ∈ 𝑦) |
| 126 | 33 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑤 ∈ V) |
| 127 | 123, 124,
125, 126, 35 | syl121anc 1331 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
| 128 | 127, 37 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → (𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧})) |
| 129 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥 ¬ 𝑧 ∈ 𝑦 |
| 130 | | nfv 1843 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑤 ∈ 𝑧 |
| 131 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥 𝑓 Fn 𝑦 |
| 132 | 131, 42 | nfan 1828 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 133 | 130, 132 | nfan 1828 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 134 | 129, 133 | nfan 1828 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(¬ 𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 135 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) |
| 136 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ¬ 𝑧 ∈ 𝑦) |
| 137 | 135, 136 | jca 554 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦)) |
| 138 | 50, 52 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
| 139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
| 140 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 141 | 140 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 142 | 141 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 143 | 142 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
| 144 | | simplr 792 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ≠ ∅) |
| 145 | 135, 143,
144, 65 | syl3c 66 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑓‘𝑥) ∈ 𝑥) |
| 146 | 139, 145 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
| 147 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → 𝑤 ∈ 𝑧) |
| 148 | 147 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑤 ∈ 𝑧) |
| 149 | 148 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑤 ∈ 𝑧) |
| 150 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 ∈ {𝑧}) |
| 151 | 150, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 = 𝑧) |
| 152 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧)) |
| 153 | 151, 152 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧)) |
| 154 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑧 ∈ V) |
| 155 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑤 ∈ V) |
| 156 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ¬ 𝑧 ∈ 𝑦) |
| 157 | 122 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → 𝑓 Fn 𝑦) |
| 158 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑓 Fn 𝑦) |
| 159 | 158 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑓 Fn 𝑦) |
| 160 | | fndm 5990 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 Fn 𝑦 → dom 𝑓 = 𝑦) |
| 161 | 159, 160 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → dom 𝑓 = 𝑦) |
| 162 | 156, 161 | neleqtrrd 2723 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ¬ 𝑧 ∈ dom 𝑓) |
| 163 | | fsnunfv 6453 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V ∧ ¬ 𝑧 ∈ dom 𝑓) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧) = 𝑤) |
| 164 | 154, 155,
162, 163 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧) = 𝑤) |
| 165 | 153, 164 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = 𝑤) |
| 166 | 149, 165,
151 | 3eltr4d 2716 |
. . . . . . . . . . . . . . . . 17
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
| 167 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝑦 ∪ {𝑧})) |
| 168 | 167, 80 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → (𝑥 ∈ 𝑦 ∨ 𝑥 ∈ {𝑧})) |
| 169 | 146, 166,
168 | mpjaodan 827 |
. . . . . . . . . . . . . . . 16
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
| 170 | 169 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
| 171 | 170 | ex 450 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → (𝑥 ∈ (𝑦 ∪ {𝑧}) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
| 172 | 134, 171 | ralrimi 2957 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
| 173 | 128, 172 | jca 554 |
. . . . . . . . . . . 12
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
| 174 | 173, 99 | syl 17 |
. . . . . . . . . . 11
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 175 | 174 | ex 450 |
. . . . . . . . . 10
⊢ (¬
𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
| 176 | 175 | 2eximdv 1848 |
. . . . . . . . 9
⊢ (¬
𝑧 ∈ 𝑦 → (∃𝑤∃𝑓(𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
| 177 | 121, 176 | syl5bir 233 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ 𝑦 → ((∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
| 178 | 177 | imp 445 |
. . . . . . 7
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 179 | 102 | exlimiv 1858 |
. . . . . . 7
⊢
(∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 180 | 178, 179 | syl 17 |
. . . . . 6
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
| 181 | 180, 112 | sylibr 224 |
. . . . 5
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 182 | 120, 181 | syl 17 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 183 | 113, 182 | pm2.61dan 832 |
. . 3
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
| 184 | 183 | ex 450 |
. 2
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
| 185 | 4, 8, 12, 16, 26, 184 | findcard2s 8201 |
1
⊢ (𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |