MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth2 Structured version   Visualization version   GIF version

Theorem axgroth2 9647
Description: Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007.)
Assertion
Ref Expression
axgroth2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem axgroth2
StepHypRef Expression
1 ax-groth 9645 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
2 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
3 ssdomg 8001 . . . . . . . . . 10 (𝑦 ∈ V → (𝑧𝑦𝑧𝑦))
42, 3ax-mp 5 . . . . . . . . 9 (𝑧𝑦𝑧𝑦)
54biantrurd 529 . . . . . . . 8 (𝑧𝑦 → (𝑦𝑧 ↔ (𝑧𝑦𝑦𝑧)))
6 sbthb 8081 . . . . . . . 8 ((𝑧𝑦𝑦𝑧) ↔ 𝑧𝑦)
75, 6syl6bb 276 . . . . . . 7 (𝑧𝑦 → (𝑦𝑧𝑧𝑦))
87orbi1d 739 . . . . . 6 (𝑧𝑦 → ((𝑦𝑧𝑧𝑦) ↔ (𝑧𝑦𝑧𝑦)))
98pm5.74i 260 . . . . 5 ((𝑧𝑦 → (𝑦𝑧𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
109albii 1747 . . . 4 (∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
11103anbi3i 1255 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
1211exbii 1774 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
131, 12mpbir 221 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑦𝑧𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037  wal 1481  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cen 7952  cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-groth 9645
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-dom 7957
This theorem is referenced by:  axgroth3  9653
  Copyright terms: Public domain W3C validator