MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axltadd Structured version   Visualization version   GIF version

Theorem axltadd 10111
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd 10012 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axltadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))

Proof of Theorem axltadd
StepHypRef Expression
1 ax-pre-ltadd 10012 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
2 ltxrlt 10108 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
323adant3 1081 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
4 readdcl 10019 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + 𝐴) ∈ ℝ)
5 readdcl 10019 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
6 ltxrlt 10108 . . . . 5 (((𝐶 + 𝐴) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
74, 5, 6syl2an 494 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
873impdi 1381 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
983coml 1272 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
101, 3, 93imtr4d 283 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935   + caddc 9939   < cltrr 9940   < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-addrcl 9997  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079
This theorem is referenced by:  ltadd2  10141  nnge1  11046  ltoddhalfle  15085  dp2lt  29592  sqrtpwpw2p  41450
  Copyright terms: Public domain W3C validator