![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bastop2 | Structured version Visualization version GIF version |
Description: A version of bastop1 20797 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
Ref | Expression |
---|---|
bastop2 | ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2689 | . . . . . . . 8 ⊢ ((topGen‘𝐵) = 𝐽 → ((topGen‘𝐵) ∈ Top ↔ 𝐽 ∈ Top)) | |
2 | 1 | biimparc 504 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) ∈ Top) |
3 | tgclb 20774 | . . . . . . 7 ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | |
4 | 2, 3 | sylibr 224 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ∈ TopBases) |
5 | bastg 20770 | . . . . . 6 ⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ (topGen‘𝐵)) |
7 | simpr 477 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) = 𝐽) | |
8 | 6, 7 | sseqtrd 3641 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ 𝐽) |
9 | 8 | ex 450 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 → 𝐵 ⊆ 𝐽)) |
10 | 9 | pm4.71rd 667 | . 2 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽))) |
11 | bastop1 20797 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
12 | 11 | pm5.32da 673 | . 2 ⊢ (𝐽 ∈ Top → ((𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽) ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
13 | 10, 12 | bitrd 268 | 1 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 ∪ cuni 4436 ‘cfv 5888 topGenctg 16098 Topctop 20698 TopBasesctb 20749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-top 20699 df-bases 20750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |