![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgclb | Structured version Visualization version GIF version |
Description: The property tgcl 20773 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgclb | ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcl 20773 | . 2 ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | |
2 | 0opn 20709 | . . . . . . . . . 10 ⊢ ((topGen‘𝐵) ∈ Top → ∅ ∈ (topGen‘𝐵)) | |
3 | 2 | elfvexd 6222 | . . . . . . . . 9 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ∈ V) |
4 | bastg 20770 | . . . . . . . . 9 ⊢ (𝐵 ∈ V → 𝐵 ⊆ (topGen‘𝐵)) | |
5 | 3, 4 | syl 17 | . . . . . . . 8 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ⊆ (topGen‘𝐵)) |
6 | 5 | sselda 3603 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (topGen‘𝐵)) |
7 | 5 | sselda 3603 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ (topGen‘𝐵)) |
8 | 6, 7 | anim12dan 882 | . . . . . 6 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) |
9 | inopn 20704 | . . . . . . 7 ⊢ (((topGen‘𝐵) ∈ Top ∧ 𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵)) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) | |
10 | 9 | 3expb 1266 | . . . . . 6 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ (topGen‘𝐵) ∧ 𝑦 ∈ (topGen‘𝐵))) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) |
11 | 8, 10 | syldan 487 | . . . . 5 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ∩ 𝑦) ∈ (topGen‘𝐵)) |
12 | tg2 20769 | . . . . . 6 ⊢ (((𝑥 ∩ 𝑦) ∈ (topGen‘𝐵) ∧ 𝑧 ∈ (𝑥 ∩ 𝑦)) → ∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) | |
13 | 12 | ralrimiva 2966 | . . . . 5 ⊢ ((𝑥 ∩ 𝑦) ∈ (topGen‘𝐵) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ (((topGen‘𝐵) ∈ Top ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
15 | 14 | ralrimivva 2971 | . . 3 ⊢ ((topGen‘𝐵) ∈ Top → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))) |
16 | isbasis2g 20752 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | |
17 | 3, 16 | syl 17 | . . 3 ⊢ ((topGen‘𝐵) ∈ Top → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) |
18 | 15, 17 | mpbird 247 | . 2 ⊢ ((topGen‘𝐵) ∈ Top → 𝐵 ∈ TopBases) |
19 | 1, 18 | impbii 199 | 1 ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ‘cfv 5888 topGenctg 16098 Topctop 20698 TopBasesctb 20749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-top 20699 df-bases 20750 |
This theorem is referenced by: bastop2 20798 iocpnfordt 21019 icomnfordt 21020 iooordt 21021 tgcn 21056 tgcnp 21057 2ndcctbss 21258 2ndcomap 21261 dis2ndc 21263 flftg 21800 met2ndci 22327 xrtgioo 22609 topfneec 32350 |
Copyright terms: Public domain | W3C validator |