![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp3ar | Structured version Visualization version GIF version |
Description: Infer implication from a logical equivalence. Similar to biimpar 502. (Contributed by NM, 2-Jan-2009.) |
Ref | Expression |
---|---|
biimp3a.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
biimp3ar | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
2 | 1 | exbiri 652 | . 2 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
3 | 2 | 3imp 1256 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: rmoi 3530 brelrng 5355 div2sub 10850 nn0p1elfzo 12510 ssfzo12 12561 modltm1p1mod 12722 abssubge0 14067 qredeu 15372 abvne0 18827 slesolinvbi 20487 basgen2 20793 fcfval 21837 nmne0 22423 ovolfsf 23240 lgssq 25062 lgssq2 25063 colinearalg 25790 usgr0v 26133 frgr0vb 27126 nv1 27530 adjeq 28794 areacirc 33505 fvopabf4g 33515 exidreslem 33676 hgmapvvlem3 37217 iocmbl 37798 iunconnlem2 39171 ssfz12 41324 m1modmmod 42316 |
Copyright terms: Public domain | W3C validator |