MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biimp3ar Structured version   Visualization version   Unicode version

Theorem biimp3ar 1433
Description: Infer implication from a logical equivalence. Similar to biimpar 502. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
biimp3ar  |-  ( (
ph  /\  ps  /\  th )  ->  ch )

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
21exbiri 652 . 2  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
323imp 1256 1  |-  ( (
ph  /\  ps  /\  th )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  rmoi  3530  brelrng  5355  div2sub  10850  nn0p1elfzo  12510  ssfzo12  12561  modltm1p1mod  12722  abssubge0  14067  qredeu  15372  abvne0  18827  slesolinvbi  20487  basgen2  20793  fcfval  21837  nmne0  22423  ovolfsf  23240  lgssq  25062  lgssq2  25063  colinearalg  25790  usgr0v  26133  frgr0vb  27126  nv1  27530  adjeq  28794  areacirc  33505  fvopabf4g  33515  exidreslem  33676  hgmapvvlem3  37217  iocmbl  37798  iunconnlem2  39171  ssfz12  41324  m1modmmod  42316
  Copyright terms: Public domain W3C validator