Step | Hyp | Ref
| Expression |
1 | | areacirc.1 |
. . . . . 6
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} |
2 | | opabssxp 5193 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ ×
ℝ) |
3 | 1, 2 | eqsstri 3635 |
. . . . 5
⊢ 𝑆 ⊆ (ℝ ×
ℝ) |
4 | 3 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑆 ⊆ (ℝ ×
ℝ)) |
5 | 1 | areacirclem5 33504 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
6 | | resqcl 12931 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) |
7 | 6 | 3ad2ant1 1082 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ) |
8 | | resqcl 12931 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℝ) |
9 | 8 | 3ad2ant3 1084 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ) |
10 | 7, 9 | resubcld 10458 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
11 | 10 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
12 | | absresq 14042 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ →
((abs‘𝑡)↑2) =
(𝑡↑2)) |
13 | 12 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
14 | 13 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
15 | | recn 10026 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) |
16 | 15 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ →
(abs‘𝑡) ∈
ℝ) |
17 | 16 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (abs‘𝑡) ∈
ℝ) |
18 | | simp1 1061 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑅 ∈ ℝ) |
19 | 15 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ → 0 ≤
(abs‘𝑡)) |
20 | 19 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘𝑡)) |
21 | | simp2 1062 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤ 𝑅) |
22 | 17, 18, 20, 21 | le2sqd 13044 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2))) |
23 | 7, 9 | subge0d 10617 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
24 | 14, 22, 23 | 3bitr4d 300 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
25 | 24 | biimpa 501 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
26 | 11, 25 | resqrtcld 14156 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
27 | 26 | renegcld 10457 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
28 | | iccmbl 23334 |
. . . . . . . . . 10
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
29 | 27, 26, 28 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
30 | | mblvol 23298 |
. . . . . . . . . . . 12
⊢
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol
→ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
32 | 11, 25 | sqrtge0d 14159 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
33 | 26, 26, 32, 32 | addge0d 10603 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
34 | | recn 10026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℂ) |
35 | 34 | sqcld 13006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℂ) |
36 | 35 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ) |
37 | 15 | sqcld 13006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℂ) |
38 | 37 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ) |
39 | 36, 38 | subcld 10392 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
40 | 39 | sqrtcld 14176 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) →
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℂ) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
42 | 41, 41 | subnegd 10399 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
43 | 42 | breq2d 4665 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
44 | 26, 27 | subge0d 10617 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
45 | 43, 44 | bitr3d 270 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
46 | 33, 45 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
47 | | ovolicc 23291 |
. . . . . . . . . . . 12
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
48 | 27, 26, 46, 47 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
49 | 31, 48 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
50 | 26, 27 | resubcld 10458 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈
ℝ) |
51 | 49, 50 | eqeltrd 2701 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ) |
52 | | volf 23297 |
. . . . . . . . . 10
⊢ vol:dom
vol⟶(0[,]+∞) |
53 | | ffn 6045 |
. . . . . . . . . 10
⊢ (vol:dom
vol⟶(0[,]+∞) → vol Fn dom vol) |
54 | | elpreima 6337 |
. . . . . . . . . 10
⊢ (vol Fn
dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ) ↔
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ))) |
55 | 52, 53, 54 | mp2b 10 |
. . . . . . . . 9
⊢
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ) ↔
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ)) |
56 | 29, 51, 55 | sylanbrc 698 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ)) |
57 | | 0mbl 23307 |
. . . . . . . . . 10
⊢ ∅
∈ dom vol |
58 | | mblvol 23298 |
. . . . . . . . . . . . 13
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(vol‘∅) = (vol*‘∅) |
60 | | ovol0 23261 |
. . . . . . . . . . . 12
⊢
(vol*‘∅) = 0 |
61 | 59, 60 | eqtri 2644 |
. . . . . . . . . . 11
⊢
(vol‘∅) = 0 |
62 | | 0re 10040 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
63 | 61, 62 | eqeltri 2697 |
. . . . . . . . . 10
⊢
(vol‘∅) ∈ ℝ |
64 | | elpreima 6337 |
. . . . . . . . . . 11
⊢ (vol Fn
dom vol → (∅ ∈ (◡vol
“ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅)
∈ ℝ))) |
65 | 52, 53, 64 | mp2b 10 |
. . . . . . . . . 10
⊢ (∅
∈ (◡vol “ ℝ) ↔
(∅ ∈ dom vol ∧ (vol‘∅) ∈
ℝ)) |
66 | 57, 63, 65 | mpbir2an 955 |
. . . . . . . . 9
⊢ ∅
∈ (◡vol “
ℝ) |
67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (◡vol “ ℝ)) |
68 | 56, 67 | ifclda 4120 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈
(◡vol “
ℝ)) |
69 | 5, 68 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
70 | 69 | 3expa 1265 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
71 | 70 | ralrimiva 2966 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
72 | 5 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
73 | 72 | 3expa 1265 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
74 | 73 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) = (𝑡 ∈ ℝ ↦
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)))) |
75 | | renegcl 10344 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ → -𝑅 ∈
ℝ) |
76 | 75 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → -𝑅 ∈
ℝ) |
77 | | simpl 473 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑅 ∈ ℝ) |
78 | | iccssre 12255 |
. . . . . . 7
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ) |
79 | 76, 77, 78 | syl2anc 693 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅[,]𝑅) ⊆ ℝ) |
80 | | rembl 23308 |
. . . . . . 7
⊢ ℝ
∈ dom vol |
81 | 80 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ℝ ∈
dom vol) |
82 | | fvexd 6203 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈
V) |
83 | | eldif 3584 |
. . . . . . . . 9
⊢ (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅))) |
84 | | 3anass 1042 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
86 | 75 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → -𝑅 ∈ ℝ) |
87 | | elicc2 12238 |
. . . . . . . . . . . . . . 15
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
88 | 86, 18, 87 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
89 | | simp3 1063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
90 | 89, 18 | absled 14169 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
91 | 89 | biantrurd 529 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
92 | 90, 91 | bitrd 268 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
93 | 85, 88, 92 | 3bitr4rd 301 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 𝑡 ∈ (-𝑅[,]𝑅))) |
94 | 93 | biimpd 219 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 → 𝑡 ∈ (-𝑅[,]𝑅))) |
95 | 94 | con3d 148 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)) |
96 | 95 | 3expia 1267 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (¬
𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))) |
97 | 96 | impd 447 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ ¬
𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅)) |
98 | 83, 97 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅)) |
99 | 98 | imp 445 |
. . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅) |
100 | | iffalse 4095 |
. . . . . . . . 9
⊢ (¬
(abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
∅) |
101 | 100 | fveq2d 6195 |
. . . . . . . 8
⊢ (¬
(abs‘𝑡) ≤ 𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘∅)) |
102 | 101, 61 | syl6eq 2672 |
. . . . . . 7
⊢ (¬
(abs‘𝑡) ≤ 𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
103 | 99, 102 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
104 | 76, 77, 87 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
105 | 90 | biimprd 238 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → (abs‘𝑡) ≤ 𝑅)) |
106 | 105 | expd 452 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → (abs‘𝑡) ≤ 𝑅))) |
107 | 106 | 3expia 1267 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → (abs‘𝑡) ≤ 𝑅)))) |
108 | 107 | 3impd 1281 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → (abs‘𝑡) ≤ 𝑅)) |
109 | 104, 108 | sylbid 230 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅)) |
110 | 109 | 3impia 1261 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅) |
111 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢
((abs‘𝑡) ≤
𝑅 →
if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) |
112 | 111 | fveq2d 6195 |
. . . . . . . . . . 11
⊢
((abs‘𝑡) ≤
𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
113 | 110, 112 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
114 | 6 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ) |
115 | 75, 78 | mpancom 703 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ) |
116 | 115 | sselda 3603 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ) |
117 | 116 | 3adant2 1080 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ) |
118 | 117 | resqcld 13035 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ) |
119 | 114, 118 | resubcld 10458 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
120 | 75, 87 | mpancom 703 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
121 | 120 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
122 | 22, 90, 14 | 3bitr3rd 299 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
123 | 23, 122 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
124 | 123 | biimprd 238 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
125 | 124 | expd 452 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))) |
126 | 125 | 3expia 1267 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))) |
127 | 126 | 3impd 1281 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
128 | 121, 127 | sylbid 230 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
129 | 128 | 3impia 1261 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
130 | 119, 129 | resqrtcld 14156 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
131 | 130 | renegcld 10457 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
132 | 131, 130,
28 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
133 | 132, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
134 | 119 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
135 | 134 | sqrtcld 14176 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
136 | 135, 135 | subnegd 10399 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
137 | 119, 129 | sqrtge0d 14159 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
138 | 130, 130,
137, 137 | addge0d 10603 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
139 | 136 | breq2d 4665 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
140 | 130, 131 | subge0d 10617 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
141 | 139, 140 | bitr3d 270 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
142 | 138, 141 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) |
143 | 131, 130,
142, 47 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
144 | 135 | 2timesd 11275 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
145 | 136, 143,
144 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
146 | 113, 133,
145 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2
· (√‘((𝑅↑2) − (𝑡↑2))))) |
147 | 146 | 3expa 1265 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2
· (√‘((𝑅↑2) − (𝑡↑2))))) |
148 | 147 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2)))))) |
149 | | areacirclem3 33502 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈
𝐿1) |
150 | 148, 149 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈
𝐿1) |
151 | 79, 81, 82, 103, 150 | iblss2 23572 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈
𝐿1) |
152 | 74, 151 | eqeltrd 2701 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) ∈
𝐿1) |
153 | | dmarea 24684 |
. . . 4
⊢ (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ ×
ℝ) ∧ ∀𝑡
∈ ℝ (𝑆 “
{𝑡}) ∈ (◡vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) ∈
𝐿1)) |
154 | 4, 71, 152, 153 | syl3anbrc 1246 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑆 ∈ dom area) |
155 | | areaval 24691 |
. . 3
⊢ (𝑆 ∈ dom area →
(area‘𝑆) =
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡) |
156 | 154, 155 | syl 17 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (area‘𝑆) =
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡) |
157 | | elioore 12205 |
. . . . . 6
⊢ (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ) |
158 | 5 | 3expa 1265 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
159 | 157, 158 | sylan2 491 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
160 | 159 | fveq2d 6195 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
161 | 160 | itgeq2dv 23548 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
162 | | ioossre 12235 |
. . . . 5
⊢ (-𝑅(,)𝑅) ⊆ ℝ |
163 | 162 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ⊆ ℝ) |
164 | | eldif 3584 |
. . . . . 6
⊢ (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅))) |
165 | 75 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ → -𝑅 ∈
ℝ*) |
166 | | rexr 10085 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℝ*) |
167 | | elioo2 12216 |
. . . . . . . . . . . . . 14
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
168 | 165, 166,
167 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
169 | 168 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
170 | 89 | biantrurd 529 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅)))) |
171 | 89, 18 | absltd 14168 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
172 | | 3anass 1042 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
173 | 172 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅)))) |
174 | 170, 171,
173 | 3bitr4rd 301 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅)) |
175 | 169, 174 | bitrd 268 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅)) |
176 | 175 | notbid 308 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅)) |
177 | 18, 17 | lenltd 10183 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅)) |
178 | 176, 177 | bitr4d 271 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡))) |
179 | 5 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
180 | 179 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
181 | 17 | anim1i 592 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅)) |
182 | | eqle 10139 |
. . . . . . . . . . . . . . . 16
⊢
(((abs‘𝑡)
∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅) |
183 | 181, 182,
112 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
184 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘𝑡) =
𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2)) |
185 | 184 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2)) |
186 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
187 | 185, 186 | eqtr3d 2658 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2)) |
188 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅↑2) = (𝑡↑2) → ((𝑅↑2) − (𝑡↑2)) = ((𝑡↑2) − (𝑡↑2))) |
189 | 188 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) =
(√‘((𝑡↑2)
− (𝑡↑2)))) |
190 | 189 | negeqd 10275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) =
-(√‘((𝑡↑2)
− (𝑡↑2)))) |
191 | 190, 189 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) =
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2))))) |
192 | 8 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℂ) |
193 | 192 | subidd 10380 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0) |
194 | 193 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℝ →
(√‘((𝑡↑2)
− (𝑡↑2))) =
(√‘0)) |
195 | 194 | negeqd 10275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℝ →
-(√‘((𝑡↑2)
− (𝑡↑2))) =
-(√‘0)) |
196 | | sqrt0 13982 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(√‘0) = 0 |
197 | 196 | negeqi 10274 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
-(√‘0) = -0 |
198 | | neg0 10327 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -0 =
0 |
199 | 197, 198 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
-(√‘0) = 0 |
200 | 195, 199 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ →
-(√‘((𝑡↑2)
− (𝑡↑2))) =
0) |
201 | 194, 196 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ →
(√‘((𝑡↑2)
− (𝑡↑2))) =
0) |
202 | 200, 201 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ℝ →
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) =
(0[,]0)) |
203 | 202 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) →
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) =
(0[,]0)) |
204 | 191, 203 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) =
(0[,]0)) |
205 | 204 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol‘(0[,]0))) |
206 | | iccmbl 23334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom
vol) |
207 | 62, 62, 206 | mp2an 708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0[,]0)
∈ dom vol |
208 | | mblvol 23298 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0[,]0)
∈ dom vol → (vol‘(0[,]0)) =
(vol*‘(0[,]0))) |
209 | 207, 208 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(vol‘(0[,]0)) = (vol*‘(0[,]0)) |
210 | | 0xr 10086 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ* |
211 | | iccid 12220 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
ℝ* → (0[,]0) = {0}) |
212 | 211 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ* → (vol*‘(0[,]0)) =
(vol*‘{0})) |
213 | 210, 212 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(vol*‘(0[,]0)) = (vol*‘{0}) |
214 | | ovolsn 23263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ → (vol*‘{0}) = 0) |
215 | 62, 214 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(vol*‘{0}) = 0 |
216 | 213, 215 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢
(vol*‘(0[,]0)) = 0 |
217 | 209, 216 | eqtri 2644 |
. . . . . . . . . . . . . . . . 17
⊢
(vol‘(0[,]0)) = 0 |
218 | 205, 217 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
0) |
219 | 187, 218 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
0) |
220 | 183, 219 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
221 | 220 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
222 | 221 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
223 | 18, 17 | ltnled 10184 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) |
224 | 223 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) |
225 | | simpl1 1064 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ) |
226 | 17 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ) |
227 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡)) |
228 | 225, 226,
227 | leltned 10190 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅)) |
229 | 224, 228 | bitr3d 270 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅)) |
230 | 229, 102 | syl6bir 244 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
231 | 222, 230 | pm2.61dne 2880 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
232 | 180, 231 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0) |
233 | 232 | ex 450 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0)) |
234 | 178, 233 | sylbid 230 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)) |
235 | 234 | 3expia 1267 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (¬
𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))) |
236 | 235 | impd 447 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ ¬
𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0)) |
237 | 164, 236 | syl5bi 232 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0)) |
238 | 237 | imp 445 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0) |
239 | 163, 238 | itgss 23578 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡) |
240 | | negeq 10273 |
. . . . . . . . . 10
⊢ (𝑅 = 0 → -𝑅 = -0) |
241 | 240, 198 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑅 = 0 → -𝑅 = 0) |
242 | | id 22 |
. . . . . . . . 9
⊢ (𝑅 = 0 → 𝑅 = 0) |
243 | 241, 242 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0)) |
244 | | iooid 12203 |
. . . . . . . 8
⊢ (0(,)0) =
∅ |
245 | 243, 244 | syl6eq 2672 |
. . . . . . 7
⊢ (𝑅 = 0 → (-𝑅(,)𝑅) = ∅) |
246 | 245 | adantl 482 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅) |
247 | | itgeq1 23539 |
. . . . . 6
⊢ ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 =
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
248 | 246, 247 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 =
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
249 | | itg0 23546 |
. . . . . 6
⊢
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0 |
250 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑅 = 0 → (𝑅↑2) = (0↑2)) |
251 | 250 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑅 = 0 → (π ·
(𝑅↑2)) = (π
· (0↑2))) |
252 | | sq0 12955 |
. . . . . . . . . 10
⊢
(0↑2) = 0 |
253 | 252 | oveq2i 6661 |
. . . . . . . . 9
⊢ (π
· (0↑2)) = (π · 0) |
254 | | picn 24211 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
255 | 254 | mul01i 10226 |
. . . . . . . . 9
⊢ (π
· 0) = 0 |
256 | 253, 255 | eqtr2i 2645 |
. . . . . . . 8
⊢ 0 = (π
· (0↑2)) |
257 | 251, 256 | syl6reqr 2675 |
. . . . . . 7
⊢ (𝑅 = 0 → 0 = (π ·
(𝑅↑2))) |
258 | 257 | adantl 482 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2))) |
259 | 249, 258 | syl5eq 2668 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) →
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
260 | 248, 259 | eqtrd 2656 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
261 | | simp1 1061 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ) |
262 | | 0red 10041 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 0 ∈
ℝ) |
263 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 0 ≤ 𝑅) |
264 | 262, 77, 263 | leltned 10190 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (0 < 𝑅 ↔ 𝑅 ≠ 0)) |
265 | 264 | biimp3ar 1433 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 0 < 𝑅) |
266 | 261, 265 | elrpd 11869 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 𝑅 ∈
ℝ+) |
267 | 266 | 3expa 1265 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈
ℝ+) |
268 | 157, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ) |
269 | 268 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ) |
270 | | rpre 11839 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) |
271 | 270 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ) |
272 | 270 | renegcld 10457 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℝ) |
273 | 272 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℝ*) |
274 | | rpxr 11840 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ*) |
275 | 273, 274,
167 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
276 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 𝑡 ∈
ℝ) |
277 | 270 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 𝑅 ∈
ℝ) |
278 | 276, 277 | absltd 14168 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡) <
𝑅 ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
279 | 278 | biimprd 238 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → (abs‘𝑡) < 𝑅)) |
280 | 279 | exp4b 632 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ ℝ
→ (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅)))) |
281 | 280 | 3impd 1281 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((𝑡 ∈ ℝ
∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → (abs‘𝑡) < 𝑅)) |
282 | 275, 281 | sylbid 230 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅)) |
283 | 282 | imp 445 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅) |
284 | 269, 271,
283 | ltled 10185 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅) |
285 | 284, 112 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
286 | 270 | resqcld 13035 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℝ) |
287 | 286 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℂ) |
288 | 287 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑅↑2) ∈
ℂ) |
289 | 192 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑡↑2) ∈
ℂ) |
290 | 288, 289 | subcld 10392 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑅↑2) −
(𝑡↑2)) ∈
ℂ) |
291 | 290 | sqrtcld 14176 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
292 | 291, 291 | subnegd 10399 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
293 | 157, 292 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
294 | 286 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑅↑2) ∈
ℝ) |
295 | 8 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑡↑2) ∈
ℝ) |
296 | 294, 295 | resubcld 10458 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑅↑2) −
(𝑡↑2)) ∈
ℝ) |
297 | 157, 296 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
298 | | 0red 10041 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ) |
299 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (abs‘𝑡) ∈
ℝ) |
300 | 19 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘𝑡)) |
301 | | rpge0 11845 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑅 ∈ ℝ+
→ 0 ≤ 𝑅) |
302 | 301 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 0 ≤ 𝑅) |
303 | 299, 277,
300, 302 | lt2sqd 13043 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡) <
𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2))) |
304 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡)↑2) = (𝑡↑2)) |
305 | 304 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2))) |
306 | 303, 278,
305 | 3bitr3rd 299 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑡↑2) <
(𝑅↑2) ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
307 | 295, 294 | posdifd 10614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑡↑2) <
(𝑅↑2) ↔ 0 <
((𝑅↑2) − (𝑡↑2)))) |
308 | 306, 307 | bitr3d 270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2)))) |
309 | 308 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
310 | 309 | exp4b 632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ ℝ
→ (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2)))))) |
311 | 310 | 3impd 1281 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ ((𝑡 ∈ ℝ
∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
312 | 275, 311 | sylbid 230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
313 | 312 | imp 445 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2))) |
314 | 298, 297,
313 | ltled 10185 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
315 | 297, 314 | resqrtcld 14156 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
316 | 315 | renegcld 10457 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
317 | 316, 315,
28 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
318 | 317, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
319 | 297, 314 | sqrtge0d 14159 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
320 | 315, 315,
319, 319 | addge0d 10603 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
321 | 293 | breq2d 4665 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
322 | 315, 316 | subge0d 10617 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
323 | 321, 322 | bitr3d 270 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
324 | 320, 323 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) |
325 | 316, 315,
324, 47 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
326 | 318, 325 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
327 | | ax-resscn 9993 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
328 | 327 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ ℝ ⊆ ℂ) |
329 | 272, 270,
78 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅[,]𝑅) ⊆
ℝ) |
330 | | rpcn 11841 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℂ) |
331 | 330 | sqcld 13006 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℂ) |
332 | 331 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ) |
333 | 329 | sselda 3603 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ) |
334 | 333 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ) |
335 | 330 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ) |
336 | | rpne0 11848 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ≠
0) |
337 | 336 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0) |
338 | 334, 335,
337 | divcld 10801 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ) |
339 | | asincl 24600 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ) |
340 | 338, 339 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ) |
341 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ) |
342 | 338 | sqcld 13006 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ) |
343 | 341, 342 | subcld 10392 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ) |
344 | 343 | sqrtcld 14176 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ) |
345 | 338, 344 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈
ℂ) |
346 | 340, 345 | addcld 10059 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈
ℂ) |
347 | 332, 346 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈
ℂ) |
348 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
349 | 348 | tgioo2 22606 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
350 | | iccntr 22624 |
. . . . . . . . . . . . . . 15
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅)) |
351 | 272, 270,
350 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅)) |
352 | 328, 329,
347, 349, 348, 351 | dvmptntr 23734 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))) |
353 | | areacirclem1 33500 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
354 | 352, 353 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
355 | 354 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
356 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2)) |
357 | 356 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2))) |
358 | 357 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2)))) |
359 | 358 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
360 | 359 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
361 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅)) |
362 | | ovexd 6680 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈
V) |
363 | 355, 360,
361, 362 | fvmptd 6288 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2))))) |
364 | 157, 291 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
365 | 364 | 2timesd 11275 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
366 | 363, 365 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))) |
367 | 293, 326,
366 | 3eqtr4rd 2667 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
368 | 285, 367 | eqtr4d 2659 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
((ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡)) |
369 | 368 | itgeq2dv 23548 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡) |
370 | 270, 270,
301, 301 | addge0d 10603 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ 0 ≤ (𝑅 + 𝑅)) |
371 | 330, 330 | subnegd 10399 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ (𝑅 − -𝑅) = (𝑅 + 𝑅)) |
372 | 371 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 −
-𝑅) ↔ 0 ≤ (𝑅 + 𝑅))) |
373 | 270, 272 | subge0d 10617 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 −
-𝑅) ↔ -𝑅 ≤ 𝑅)) |
374 | 372, 373 | bitr3d 270 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 + 𝑅) ↔ -𝑅 ≤ 𝑅)) |
375 | 370, 374 | mpbid 222 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ≤ 𝑅) |
376 | | 2cn 11091 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
377 | 162, 327 | sstri 3612 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ⊆ ℂ |
378 | | ssid 3624 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
379 | 376, 377,
378 | 3pm3.2i 1239 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ
⊆ ℂ) |
380 | | cncfmptc 22714 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑢 ∈
(-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
381 | 379, 380 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
382 | | ioossicc 12259 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) |
383 | | resmpt 5449 |
. . . . . . . . . . 11
⊢ ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))) |
384 | 382, 383 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) |
385 | | areacirclem2 33501 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
386 | 270, 301,
385 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
387 | | rescncf 22700 |
. . . . . . . . . . 11
⊢ ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))) |
388 | 382, 386,
387 | mpsyl 68 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
389 | 384, 388 | syl5eqelr 2706 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
390 | 381, 389 | mulcncf 23215 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
391 | 354, 390 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
392 | 382 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)) |
393 | | ioombl 23333 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ∈ dom vol |
394 | 393 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ∈ dom vol) |
395 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈
V) |
396 | | areacirclem3 33502 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
397 | 392, 394,
395, 396 | iblss 23571 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
398 | 270, 301,
397 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
399 | 354, 398 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈
𝐿1) |
400 | | areacirclem4 33503 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
401 | 272, 270,
375, 391, 399, 400 | ftc2nc 33494 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅))) |
402 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) |
403 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅)) |
404 | 403 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅))) |
405 | 403 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2)) |
406 | 405 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2))) |
407 | 406 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 −
((𝑅 / 𝑅)↑2)))) |
408 | 403, 407 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) |
409 | 404, 408 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) |
410 | 409 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
411 | 410 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
412 | | ubicc2 12289 |
. . . . . . . . . . 11
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ* ∧ -𝑅 ≤ 𝑅) → 𝑅 ∈ (-𝑅[,]𝑅)) |
413 | 273, 274,
375, 412 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈ (-𝑅[,]𝑅)) |
414 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V) |
415 | 402, 411,
413, 414 | fvmptd 6288 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
416 | 330, 336 | dividd 10799 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅 / 𝑅) = 1) |
417 | 416 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(𝑅 /
𝑅)) =
(arcsin‘1)) |
418 | | asin1 24621 |
. . . . . . . . . . . . 13
⊢
(arcsin‘1) = (π / 2) |
419 | 417, 418 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(𝑅 /
𝑅)) = (π /
2)) |
420 | 416 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅)↑2) =
(1↑2)) |
421 | | sq1 12958 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1↑2) = 1 |
422 | 420, 421 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅)↑2) = 1) |
423 | 422 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − ((𝑅 /
𝑅)↑2)) = (1 −
1)) |
424 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ 1 ∈ ℂ) |
425 | 424 | subidd 10380 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − 1) = 0) |
426 | 423, 425 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (1 − ((𝑅 /
𝑅)↑2)) =
0) |
427 | 426 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((𝑅 / 𝑅)↑2))) =
(√‘0)) |
428 | 427, 196 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0) |
429 | 428 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · (√‘(1
− ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0)) |
430 | 330, 330,
336 | divcld 10801 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅 / 𝑅) ∈
ℂ) |
431 | 430 | mul01d 10235 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · 0) =
0) |
432 | 429, 431 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · (√‘(1
− ((𝑅 / 𝑅)↑2)))) =
0) |
433 | 419, 432 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(𝑅 /
𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) +
0)) |
434 | | 2ne0 11113 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
435 | 254, 376,
434 | divcli 10767 |
. . . . . . . . . . . . 13
⊢ (π /
2) ∈ ℂ |
436 | 435 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (π / 2) ∈ ℂ) |
437 | 436 | addid1d 10236 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((π / 2) + 0) = (π / 2)) |
438 | 433, 437 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(𝑅 /
𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2)) |
439 | 438 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π /
2))) |
440 | 415, 439 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π /
2))) |
441 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅)) |
442 | 441 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅))) |
443 | 441 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2)) |
444 | 443 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2))) |
445 | 444 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 −
((-𝑅 / 𝑅)↑2)))) |
446 | 441, 445 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) |
447 | 442, 446 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) |
448 | 447 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) |
449 | 448 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))))) |
450 | | lbicc2 12288 |
. . . . . . . . . . 11
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ* ∧ -𝑅 ≤ 𝑅) → -𝑅 ∈ (-𝑅[,]𝑅)) |
451 | 273, 274,
375, 450 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈ (-𝑅[,]𝑅)) |
452 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) ∈ V) |
453 | 402, 449,
451, 452 | fvmptd 6288 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))))) |
454 | 330, 330,
336 | divnegd 10814 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -(𝑅 / 𝑅) = (-𝑅 / 𝑅)) |
455 | 416 | negeqd 10275 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -(𝑅 / 𝑅) = -1) |
456 | 454, 455 | eqtr3d 2658 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅 / 𝑅) = -1) |
457 | 456 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(-𝑅 /
𝑅)) =
(arcsin‘-1)) |
458 | | ax-1cn 9994 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
459 | | asinneg 24613 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℂ → (arcsin‘-1) = -(arcsin‘1)) |
460 | 458, 459 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(arcsin‘-1) = -(arcsin‘1) |
461 | 418 | negeqi 10274 |
. . . . . . . . . . . . . 14
⊢
-(arcsin‘1) = -(π / 2) |
462 | 460, 461 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢
(arcsin‘-1) = -(π / 2) |
463 | 457, 462 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(-𝑅 /
𝑅)) = -(π /
2)) |
464 | 456 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅)↑2) =
(-1↑2)) |
465 | | neg1sqe1 12959 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-1↑2) = 1 |
466 | 464, 465 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅)↑2) = 1) |
467 | 466 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − ((-𝑅 /
𝑅)↑2)) = (1 −
1)) |
468 | 467, 425 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (1 − ((-𝑅 /
𝑅)↑2)) =
0) |
469 | 468 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((-𝑅 / 𝑅)↑2))) =
(√‘0)) |
470 | 469, 196 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0) |
471 | 470 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · (√‘(1
− ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0)) |
472 | 272 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℂ) |
473 | 472, 330,
336 | divcld 10801 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅 / 𝑅) ∈
ℂ) |
474 | 473 | mul01d 10235 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · 0) =
0) |
475 | 471, 474 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · (√‘(1
− ((-𝑅 / 𝑅)↑2)))) =
0) |
476 | 463, 475 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(-𝑅 /
𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) = (-(π / 2) +
0)) |
477 | 435 | negcli 10349 |
. . . . . . . . . . . . 13
⊢ -(π /
2) ∈ ℂ |
478 | 477 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ -(π / 2) ∈ ℂ) |
479 | 478 | addid1d 10236 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (-(π / 2) + 0) = -(π / 2)) |
480 | 476, 479 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(-𝑅 /
𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) = -(π /
2)) |
481 | 480 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π /
2))) |
482 | 453, 481 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π /
2))) |
483 | 440, 482 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) −
((𝑅↑2) · -(π
/ 2)))) |
484 | 435, 435 | subnegi 10360 |
. . . . . . . . . . 11
⊢ ((π /
2) − -(π / 2)) = ((π / 2) + (π / 2)) |
485 | | pidiv2halves 24219 |
. . . . . . . . . . 11
⊢ ((π /
2) + (π / 2)) = π |
486 | 484, 485 | eqtri 2644 |
. . . . . . . . . 10
⊢ ((π /
2) − -(π / 2)) = π |
487 | 486 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((π / 2) − -(π / 2)) = π) |
488 | 487 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((π / 2) − -(π / 2))) = ((𝑅↑2) · π)) |
489 | 331, 436,
478 | subdid 10486 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) −
((𝑅↑2) · -(π
/ 2)))) |
490 | 254 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ π ∈ ℂ) |
491 | 331, 490 | mulcomd 10061 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
π) = (π · (𝑅↑2))) |
492 | 488, 489,
491 | 3eqtr3d 2664 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (((𝑅↑2)
· (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π
· (𝑅↑2))) |
493 | 483, 492 | eqtrd 2656 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2))) |
494 | 369, 401,
493 | 3eqtrd 2660 |
. . . . 5
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
495 | 267, 494 | syl 17 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
496 | 260, 495 | pm2.61dane 2881 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
497 | 161, 239,
496 | 3eqtr3d 2664 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) →
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡 = (π · (𝑅↑2))) |
498 | 156, 497 | eqtrd 2656 |
1
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (area‘𝑆) = (π · (𝑅↑2))) |