| Step | Hyp | Ref
| Expression |
| 1 | | areacirc.1 |
. . . . . 6
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} |
| 2 | | opabssxp 5193 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ((𝑥↑2) + (𝑦↑2)) ≤ (𝑅↑2))} ⊆ (ℝ ×
ℝ) |
| 3 | 1, 2 | eqsstri 3635 |
. . . . 5
⊢ 𝑆 ⊆ (ℝ ×
ℝ) |
| 4 | 3 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑆 ⊆ (ℝ ×
ℝ)) |
| 5 | 1 | areacirclem5 33504 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
| 6 | | resqcl 12931 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℝ) |
| 7 | 6 | 3ad2ant1 1082 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ) |
| 8 | | resqcl 12931 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℝ) |
| 9 | 8 | 3ad2ant3 1084 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ) |
| 10 | 7, 9 | resubcld 10458 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
| 11 | 10 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
| 12 | | absresq 14042 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ →
((abs‘𝑡)↑2) =
(𝑡↑2)) |
| 13 | 12 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
| 14 | 13 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (((abs‘𝑡)↑2) ≤ (𝑅↑2) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
| 15 | | recn 10026 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ ℝ → 𝑡 ∈
ℂ) |
| 16 | 15 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ →
(abs‘𝑡) ∈
ℝ) |
| 17 | 16 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (abs‘𝑡) ∈
ℝ) |
| 18 | | simp1 1061 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑅 ∈ ℝ) |
| 19 | 15 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ → 0 ≤
(abs‘𝑡)) |
| 20 | 19 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘𝑡)) |
| 21 | | simp2 1062 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 0 ≤ 𝑅) |
| 22 | 17, 18, 20, 21 | le2sqd 13044 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2))) |
| 23 | 7, 9 | subge0d 10617 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (𝑡↑2) ≤ (𝑅↑2))) |
| 24 | 14, 22, 23 | 3bitr4d 300 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
| 25 | 24 | biimpa 501 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
| 26 | 11, 25 | resqrtcld 14156 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
| 27 | 26 | renegcld 10457 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
| 28 | | iccmbl 23334 |
. . . . . . . . . 10
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
| 29 | 27, 26, 28 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
| 30 | | mblvol 23298 |
. . . . . . . . . . . 12
⊢
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol
→ (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 32 | 11, 25 | sqrtge0d 14159 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
| 33 | 26, 26, 32, 32 | addge0d 10603 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 34 | | recn 10026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℂ) |
| 35 | 34 | sqcld 13006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∈ ℝ → (𝑅↑2) ∈
ℂ) |
| 36 | 35 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℂ) |
| 37 | 15 | sqcld 13006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℂ) |
| 38 | 37 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℂ) |
| 39 | 36, 38 | subcld 10392 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
| 40 | 39 | sqrtcld 14176 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) →
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℂ) |
| 41 | 40 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
| 42 | 41, 41 | subnegd 10399 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 43 | 42 | breq2d 4665 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
| 44 | 26, 27 | subge0d 10617 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
| 45 | 43, 44 | bitr3d 270 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
| 46 | 33, 45 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
| 47 | | ovolicc 23291 |
. . . . . . . . . . . 12
⊢
((-(√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ ∧
(√‘((𝑅↑2)
− (𝑡↑2))) ∈
ℝ ∧ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2)))) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
| 48 | 27, 26, 46, 47 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
| 49 | 31, 48 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
| 50 | 26, 27 | resubcld 10458 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) ∈
ℝ) |
| 51 | 49, 50 | eqeltrd 2701 |
. . . . . . . . 9
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ) |
| 52 | | volf 23297 |
. . . . . . . . . 10
⊢ vol:dom
vol⟶(0[,]+∞) |
| 53 | | ffn 6045 |
. . . . . . . . . 10
⊢ (vol:dom
vol⟶(0[,]+∞) → vol Fn dom vol) |
| 54 | | elpreima 6337 |
. . . . . . . . . 10
⊢ (vol Fn
dom vol → ((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ) ↔
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ))) |
| 55 | 52, 53, 54 | mp2b 10 |
. . . . . . . . 9
⊢
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ) ↔
((-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom vol ∧
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) ∈
ℝ)) |
| 56 | 29, 51, 55 | sylanbrc 698 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) ≤ 𝑅) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ (◡vol “ ℝ)) |
| 57 | | 0mbl 23307 |
. . . . . . . . . 10
⊢ ∅
∈ dom vol |
| 58 | | mblvol 23298 |
. . . . . . . . . . . . 13
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
| 59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(vol‘∅) = (vol*‘∅) |
| 60 | | ovol0 23261 |
. . . . . . . . . . . 12
⊢
(vol*‘∅) = 0 |
| 61 | 59, 60 | eqtri 2644 |
. . . . . . . . . . 11
⊢
(vol‘∅) = 0 |
| 62 | | 0re 10040 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 63 | 61, 62 | eqeltri 2697 |
. . . . . . . . . 10
⊢
(vol‘∅) ∈ ℝ |
| 64 | | elpreima 6337 |
. . . . . . . . . . 11
⊢ (vol Fn
dom vol → (∅ ∈ (◡vol
“ ℝ) ↔ (∅ ∈ dom vol ∧ (vol‘∅)
∈ ℝ))) |
| 65 | 52, 53, 64 | mp2b 10 |
. . . . . . . . . 10
⊢ (∅
∈ (◡vol “ ℝ) ↔
(∅ ∈ dom vol ∧ (vol‘∅) ∈
ℝ)) |
| 66 | 57, 63, 65 | mpbir2an 955 |
. . . . . . . . 9
⊢ ∅
∈ (◡vol “
ℝ) |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ ¬ (abs‘𝑡) ≤ 𝑅) → ∅ ∈ (◡vol “ ℝ)) |
| 68 | 56, 67 | ifclda 4120 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) ∈
(◡vol “
ℝ)) |
| 69 | 5, 68 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
| 70 | 69 | 3expa 1265 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
| 71 | 70 | ralrimiva 2966 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∀𝑡 ∈ ℝ (𝑆 “ {𝑡}) ∈ (◡vol “ ℝ)) |
| 72 | 5 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
| 73 | 72 | 3expa 1265 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
| 74 | 73 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) = (𝑡 ∈ ℝ ↦
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)))) |
| 75 | | renegcl 10344 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ → -𝑅 ∈
ℝ) |
| 76 | 75 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → -𝑅 ∈
ℝ) |
| 77 | | simpl 473 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑅 ∈ ℝ) |
| 78 | | iccssre 12255 |
. . . . . . 7
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ) |
| 79 | 76, 77, 78 | syl2anc 693 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅[,]𝑅) ⊆ ℝ) |
| 80 | | rembl 23308 |
. . . . . . 7
⊢ ℝ
∈ dom vol |
| 81 | 80 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ℝ ∈
dom vol) |
| 82 | | fvexd 6203 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) ∈
V) |
| 83 | | eldif 3584 |
. . . . . . . . 9
⊢ (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅[,]𝑅))) |
| 84 | | 3anass 1042 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 85 | 84 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
| 86 | 75 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → -𝑅 ∈ ℝ) |
| 87 | | elicc2 12238 |
. . . . . . . . . . . . . . 15
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 88 | 86, 18, 87 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 89 | | simp3 1063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
| 90 | 89, 18 | absled 14169 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 91 | 89 | biantrurd 529 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
| 92 | 90, 91 | bitrd 268 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (𝑡 ∈ ℝ ∧ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)))) |
| 93 | 85, 88, 92 | 3bitr4rd 301 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ 𝑡 ∈ (-𝑅[,]𝑅))) |
| 94 | 93 | biimpd 219 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 → 𝑡 ∈ (-𝑅[,]𝑅))) |
| 95 | 94 | con3d 148 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅)) |
| 96 | 95 | 3expia 1267 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (¬
𝑡 ∈ (-𝑅[,]𝑅) → ¬ (abs‘𝑡) ≤ 𝑅))) |
| 97 | 96 | impd 447 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ ¬
𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅)) |
| 98 | 83, 97 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅)) → ¬ (abs‘𝑡) ≤ 𝑅)) |
| 99 | 98 | imp 445 |
. . . . . . 7
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → ¬ (abs‘𝑡) ≤ 𝑅) |
| 100 | | iffalse 4095 |
. . . . . . . . 9
⊢ (¬
(abs‘𝑡) ≤ 𝑅 → if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
∅) |
| 101 | 100 | fveq2d 6195 |
. . . . . . . 8
⊢ (¬
(abs‘𝑡) ≤ 𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘∅)) |
| 102 | 101, 61 | syl6eq 2672 |
. . . . . . 7
⊢ (¬
(abs‘𝑡) ≤ 𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
| 103 | 99, 102 | syl 17 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅[,]𝑅))) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
| 104 | 76, 77, 87 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 105 | 90 | biimprd 238 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → (abs‘𝑡) ≤ 𝑅)) |
| 106 | 105 | expd 452 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → (abs‘𝑡) ≤ 𝑅))) |
| 107 | 106 | 3expia 1267 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → (abs‘𝑡) ≤ 𝑅)))) |
| 108 | 107 | 3impd 1281 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → (abs‘𝑡) ≤ 𝑅)) |
| 109 | 104, 108 | sylbid 230 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → (abs‘𝑡) ≤ 𝑅)) |
| 110 | 109 | 3impia 1261 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (abs‘𝑡) ≤ 𝑅) |
| 111 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢
((abs‘𝑡) ≤
𝑅 →
if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅) =
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) |
| 112 | 111 | fveq2d 6195 |
. . . . . . . . . . 11
⊢
((abs‘𝑡) ≤
𝑅 →
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 113 | 110, 112 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 114 | 6 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ) |
| 115 | 75, 78 | mpancom 703 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ → (-𝑅[,]𝑅) ⊆ ℝ) |
| 116 | 115 | sselda 3603 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ) |
| 117 | 116 | 3adant2 1080 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ) |
| 118 | 117 | resqcld 13035 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℝ) |
| 119 | 114, 118 | resubcld 10458 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
| 120 | 75, 87 | mpancom 703 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 121 | 120 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 122 | 22, 90, 14 | 3bitr3rd 299 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡↑2) ≤ (𝑅↑2) ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 123 | 23, 122 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (0 ≤ ((𝑅↑2) − (𝑡↑2)) ↔ (-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 124 | 123 | biimprd 238 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
| 125 | 124 | expd 452 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2))))) |
| 126 | 125 | 3expia 1267 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (-𝑅 ≤ 𝑡 → (𝑡 ≤ 𝑅 → 0 ≤ ((𝑅↑2) − (𝑡↑2)))))) |
| 127 | 126 | 3impd 1281 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ -𝑅 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
| 128 | 121, 127 | sylbid 230 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ ((𝑅↑2) − (𝑡↑2)))) |
| 129 | 128 | 3impia 1261 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
| 130 | 119, 129 | resqrtcld 14156 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
| 131 | 130 | renegcld 10457 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
| 132 | 131, 130,
28 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
| 133 | 132, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 134 | 119 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ) |
| 135 | 134 | sqrtcld 14176 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
| 136 | 135, 135 | subnegd 10399 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 137 | 119, 129 | sqrtge0d 14159 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
| 138 | 130, 130,
137, 137 | addge0d 10603 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 139 | 136 | breq2d 4665 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
| 140 | 130, 131 | subge0d 10617 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
| 141 | 139, 140 | bitr3d 270 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
| 142 | 138, 141 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) |
| 143 | 131, 130,
142, 47 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
| 144 | 135 | 2timesd 11275 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 145 | 136, 143,
144 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 146 | 113, 133,
145 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2
· (√‘((𝑅↑2) − (𝑡↑2))))) |
| 147 | 146 | 3expa 1265 |
. . . . . . . 8
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅[,]𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) = (2
· (√‘((𝑅↑2) − (𝑡↑2))))) |
| 148 | 147 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2)))))) |
| 149 | | areacirclem3 33502 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑡↑2))))) ∈
𝐿1) |
| 150 | 148, 149 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈
𝐿1) |
| 151 | 79, 81, 82, 103, 150 | iblss2 23572 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘if((abs‘𝑡)
≤ 𝑅,
(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅))) ∈
𝐿1) |
| 152 | 74, 151 | eqeltrd 2701 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) ∈
𝐿1) |
| 153 | | dmarea 24684 |
. . . 4
⊢ (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ ×
ℝ) ∧ ∀𝑡
∈ ℝ (𝑆 “
{𝑡}) ∈ (◡vol “ ℝ) ∧ (𝑡 ∈ ℝ ↦
(vol‘(𝑆 “
{𝑡}))) ∈
𝐿1)) |
| 154 | 4, 71, 152, 153 | syl3anbrc 1246 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 𝑆 ∈ dom area) |
| 155 | | areaval 24691 |
. . 3
⊢ (𝑆 ∈ dom area →
(area‘𝑆) =
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡) |
| 156 | 154, 155 | syl 17 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (area‘𝑆) =
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡) |
| 157 | | elioore 12205 |
. . . . . 6
⊢ (𝑡 ∈ (-𝑅(,)𝑅) → 𝑡 ∈ ℝ) |
| 158 | 5 | 3expa 1265 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ ℝ) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
| 159 | 157, 158 | sylan2 491 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
| 160 | 159 | fveq2d 6195 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
| 161 | 160 | itgeq2dv 23548 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
| 162 | | ioossre 12235 |
. . . . 5
⊢ (-𝑅(,)𝑅) ⊆ ℝ |
| 163 | 162 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ⊆ ℝ) |
| 164 | | eldif 3584 |
. . . . . 6
⊢ (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) ↔ (𝑡 ∈ ℝ ∧ ¬ 𝑡 ∈ (-𝑅(,)𝑅))) |
| 165 | 75 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ → -𝑅 ∈
ℝ*) |
| 166 | | rexr 10085 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℝ*) |
| 167 | | elioo2 12216 |
. . . . . . . . . . . . . 14
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 168 | 165, 166,
167 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 169 | 168 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 170 | 89 | biantrurd 529 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅)))) |
| 171 | 89, 18 | absltd 14168 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) < 𝑅 ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 172 | | 3anass 1042 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 173 | 172 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (𝑡 ∈ ℝ ∧ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅)))) |
| 174 | 170, 171,
173 | 3bitr4rd 301 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ (abs‘𝑡) < 𝑅)) |
| 175 | 169, 174 | bitrd 268 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑡 ∈ (-𝑅(,)𝑅) ↔ (abs‘𝑡) < 𝑅)) |
| 176 | 175 | notbid 308 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ ¬ (abs‘𝑡) < 𝑅)) |
| 177 | 18, 17 | lenltd 10183 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) ↔ ¬ (abs‘𝑡) < 𝑅)) |
| 178 | 176, 177 | bitr4d 271 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) ↔ 𝑅 ≤ (abs‘𝑡))) |
| 179 | 5 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑆 “ {𝑡}) = if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅)) |
| 180 | 179 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))),
∅))) |
| 181 | 17 | anim1i 592 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡) ∈ ℝ ∧ (abs‘𝑡) = 𝑅)) |
| 182 | | eqle 10139 |
. . . . . . . . . . . . . . . 16
⊢
(((abs‘𝑡)
∈ ℝ ∧ (abs‘𝑡) = 𝑅) → (abs‘𝑡) ≤ 𝑅) |
| 183 | 181, 182,
112 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 184 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘𝑡) =
𝑅 → ((abs‘𝑡)↑2) = (𝑅↑2)) |
| 185 | 184 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑅↑2)) |
| 186 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → ((abs‘𝑡)↑2) = (𝑡↑2)) |
| 187 | 185, 186 | eqtr3d 2658 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (𝑅↑2) = (𝑡↑2)) |
| 188 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅↑2) = (𝑡↑2) → ((𝑅↑2) − (𝑡↑2)) = ((𝑡↑2) − (𝑡↑2))) |
| 189 | 188 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅↑2) = (𝑡↑2) → (√‘((𝑅↑2) − (𝑡↑2))) =
(√‘((𝑡↑2)
− (𝑡↑2)))) |
| 190 | 189 | negeqd 10275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅↑2) = (𝑡↑2) → -(√‘((𝑅↑2) − (𝑡↑2))) =
-(√‘((𝑡↑2)
− (𝑡↑2)))) |
| 191 | 190, 189 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅↑2) = (𝑡↑2) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) =
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2))))) |
| 192 | 8 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ ℝ → (𝑡↑2) ∈
ℂ) |
| 193 | 192 | subidd 10380 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ → ((𝑡↑2) − (𝑡↑2)) = 0) |
| 194 | 193 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℝ →
(√‘((𝑡↑2)
− (𝑡↑2))) =
(√‘0)) |
| 195 | 194 | negeqd 10275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℝ →
-(√‘((𝑡↑2)
− (𝑡↑2))) =
-(√‘0)) |
| 196 | | sqrt0 13982 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(√‘0) = 0 |
| 197 | 196 | negeqi 10274 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
-(√‘0) = -0 |
| 198 | | neg0 10327 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -0 =
0 |
| 199 | 197, 198 | eqtri 2644 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
-(√‘0) = 0 |
| 200 | 195, 199 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ →
-(√‘((𝑡↑2)
− (𝑡↑2))) =
0) |
| 201 | 194, 196 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ →
(√‘((𝑡↑2)
− (𝑡↑2))) =
0) |
| 202 | 200, 201 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ℝ →
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) =
(0[,]0)) |
| 203 | 202 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) →
(-(√‘((𝑡↑2) − (𝑡↑2)))[,](√‘((𝑡↑2) − (𝑡↑2)))) =
(0[,]0)) |
| 204 | 191, 203 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) =
(0[,]0)) |
| 205 | 204 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol‘(0[,]0))) |
| 206 | | iccmbl 23334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → (0[,]0) ∈ dom
vol) |
| 207 | 62, 62, 206 | mp2an 708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0[,]0)
∈ dom vol |
| 208 | | mblvol 23298 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0[,]0)
∈ dom vol → (vol‘(0[,]0)) =
(vol*‘(0[,]0))) |
| 209 | 207, 208 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(vol‘(0[,]0)) = (vol*‘(0[,]0)) |
| 210 | | 0xr 10086 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ* |
| 211 | | iccid 12220 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
ℝ* → (0[,]0) = {0}) |
| 212 | 211 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ* → (vol*‘(0[,]0)) =
(vol*‘{0})) |
| 213 | 210, 212 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(vol*‘(0[,]0)) = (vol*‘{0}) |
| 214 | | ovolsn 23263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℝ → (vol*‘{0}) = 0) |
| 215 | 62, 214 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(vol*‘{0}) = 0 |
| 216 | 213, 215 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢
(vol*‘(0[,]0)) = 0 |
| 217 | 209, 216 | eqtri 2644 |
. . . . . . . . . . . . . . . . 17
⊢
(vol‘(0[,]0)) = 0 |
| 218 | 205, 217 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (𝑅↑2) = (𝑡↑2)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
0) |
| 219 | 187, 218 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
0) |
| 220 | 183, 219 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ (abs‘𝑡) = 𝑅) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
| 221 | 220 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
| 222 | 221 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) = 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
| 223 | 18, 17 | ltnled 10184 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) |
| 224 | 223 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ ¬ (abs‘𝑡) ≤ 𝑅)) |
| 225 | | simpl1 1064 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ∈ ℝ) |
| 226 | 17 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (abs‘𝑡) ∈ ℝ) |
| 227 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → 𝑅 ≤ (abs‘𝑡)) |
| 228 | 225, 226,
227 | leltned 10190 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (𝑅 < (abs‘𝑡) ↔ (abs‘𝑡) ≠ 𝑅)) |
| 229 | 224, 228 | bitr3d 270 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (¬ (abs‘𝑡) ≤ 𝑅 ↔ (abs‘𝑡) ≠ 𝑅)) |
| 230 | 229, 102 | syl6bir 244 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → ((abs‘𝑡) ≠ 𝑅 → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0)) |
| 231 | 222, 230 | pm2.61dne 2880 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
0) |
| 232 | 180, 231 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) ∧ 𝑅 ≤ (abs‘𝑡)) → (vol‘(𝑆 “ {𝑡})) = 0) |
| 233 | 232 | ex 450 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (𝑅 ≤ (abs‘𝑡) → (vol‘(𝑆 “ {𝑡})) = 0)) |
| 234 | 178, 233 | sylbid 230 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑡 ∈ ℝ) → (¬ 𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0)) |
| 235 | 234 | 3expia 1267 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ ℝ → (¬
𝑡 ∈ (-𝑅(,)𝑅) → (vol‘(𝑆 “ {𝑡})) = 0))) |
| 236 | 235 | impd 447 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ((𝑡 ∈ ℝ ∧ ¬
𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0)) |
| 237 | 164, 236 | syl5bi 232 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅)) → (vol‘(𝑆 “ {𝑡})) = 0)) |
| 238 | 237 | imp 445 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑡 ∈ (ℝ ∖ (-𝑅(,)𝑅))) → (vol‘(𝑆 “ {𝑡})) = 0) |
| 239 | 163, 238 | itgss 23578 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘(𝑆 “ {𝑡})) d𝑡 = ∫ℝ(vol‘(𝑆 “ {𝑡})) d𝑡) |
| 240 | | negeq 10273 |
. . . . . . . . . 10
⊢ (𝑅 = 0 → -𝑅 = -0) |
| 241 | 240, 198 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑅 = 0 → -𝑅 = 0) |
| 242 | | id 22 |
. . . . . . . . 9
⊢ (𝑅 = 0 → 𝑅 = 0) |
| 243 | 241, 242 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑅 = 0 → (-𝑅(,)𝑅) = (0(,)0)) |
| 244 | | iooid 12203 |
. . . . . . . 8
⊢ (0(,)0) =
∅ |
| 245 | 243, 244 | syl6eq 2672 |
. . . . . . 7
⊢ (𝑅 = 0 → (-𝑅(,)𝑅) = ∅) |
| 246 | 245 | adantl 482 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → (-𝑅(,)𝑅) = ∅) |
| 247 | | itgeq1 23539 |
. . . . . 6
⊢ ((-𝑅(,)𝑅) = ∅ → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 =
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
| 248 | 246, 247 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 =
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡) |
| 249 | | itg0 23546 |
. . . . . 6
⊢
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = 0 |
| 250 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑅 = 0 → (𝑅↑2) = (0↑2)) |
| 251 | 250 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑅 = 0 → (π ·
(𝑅↑2)) = (π
· (0↑2))) |
| 252 | | sq0 12955 |
. . . . . . . . . 10
⊢
(0↑2) = 0 |
| 253 | 252 | oveq2i 6661 |
. . . . . . . . 9
⊢ (π
· (0↑2)) = (π · 0) |
| 254 | | picn 24211 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
| 255 | 254 | mul01i 10226 |
. . . . . . . . 9
⊢ (π
· 0) = 0 |
| 256 | 253, 255 | eqtr2i 2645 |
. . . . . . . 8
⊢ 0 = (π
· (0↑2)) |
| 257 | 251, 256 | syl6reqr 2675 |
. . . . . . 7
⊢ (𝑅 = 0 → 0 = (π ·
(𝑅↑2))) |
| 258 | 257 | adantl 482 |
. . . . . 6
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → 0 = (π · (𝑅↑2))) |
| 259 | 249, 258 | syl5eq 2668 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) →
∫∅(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
| 260 | 248, 259 | eqtrd 2656 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 = 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
| 261 | | simp1 1061 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 𝑅 ∈ ℝ) |
| 262 | | 0red 10041 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 0 ∈
ℝ) |
| 263 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → 0 ≤ 𝑅) |
| 264 | 262, 77, 263 | leltned 10190 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (0 < 𝑅 ↔ 𝑅 ≠ 0)) |
| 265 | 264 | biimp3ar 1433 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 0 < 𝑅) |
| 266 | 261, 265 | elrpd 11869 |
. . . . . 6
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅 ∧ 𝑅 ≠ 0) → 𝑅 ∈
ℝ+) |
| 267 | 266 | 3expa 1265 |
. . . . 5
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 ≠ 0) → 𝑅 ∈
ℝ+) |
| 268 | 157, 16 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) ∈ ℝ) |
| 269 | 268 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ∈ ℝ) |
| 270 | | rpre 11839 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) |
| 271 | 270 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 𝑅 ∈ ℝ) |
| 272 | 270 | renegcld 10457 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℝ) |
| 273 | 272 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℝ*) |
| 274 | | rpxr 11840 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ*) |
| 275 | 273, 274,
167 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 276 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 𝑡 ∈
ℝ) |
| 277 | 270 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 𝑅 ∈
ℝ) |
| 278 | 276, 277 | absltd 14168 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡) <
𝑅 ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 279 | 278 | biimprd 238 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → (abs‘𝑡) < 𝑅)) |
| 280 | 279 | exp4b 632 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ ℝ
→ (-𝑅 < 𝑡 → (𝑡 < 𝑅 → (abs‘𝑡) < 𝑅)))) |
| 281 | 280 | 3impd 1281 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((𝑡 ∈ ℝ
∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → (abs‘𝑡) < 𝑅)) |
| 282 | 275, 281 | sylbid 230 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) → (abs‘𝑡) < 𝑅)) |
| 283 | 282 | imp 445 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) < 𝑅) |
| 284 | 269, 271,
283 | ltled 10185 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (abs‘𝑡) ≤ 𝑅) |
| 285 | 284, 112 | syl 17 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 286 | 270 | resqcld 13035 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℝ) |
| 287 | 286 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℂ) |
| 288 | 287 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑅↑2) ∈
ℂ) |
| 289 | 192 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑡↑2) ∈
ℂ) |
| 290 | 288, 289 | subcld 10392 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑅↑2) −
(𝑡↑2)) ∈
ℂ) |
| 291 | 290 | sqrtcld 14176 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
| 292 | 291, 291 | subnegd 10399 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((√‘((𝑅↑2) − (𝑡↑2))) − -(√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 293 | 157, 292 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 294 | 286 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑅↑2) ∈
ℝ) |
| 295 | 8 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (𝑡↑2) ∈
ℝ) |
| 296 | 294, 295 | resubcld 10458 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑅↑2) −
(𝑡↑2)) ∈
ℝ) |
| 297 | 157, 296 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℝ) |
| 298 | | 0red 10041 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ∈ ℝ) |
| 299 | 16 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (abs‘𝑡) ∈
ℝ) |
| 300 | 19 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘𝑡)) |
| 301 | | rpge0 11845 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑅 ∈ ℝ+
→ 0 ≤ 𝑅) |
| 302 | 301 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ 0 ≤ 𝑅) |
| 303 | 299, 277,
300, 302 | lt2sqd 13043 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡) <
𝑅 ↔ ((abs‘𝑡)↑2) < (𝑅↑2))) |
| 304 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((abs‘𝑡)↑2) = (𝑡↑2)) |
| 305 | 304 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ (((abs‘𝑡)↑2) < (𝑅↑2) ↔ (𝑡↑2) < (𝑅↑2))) |
| 306 | 303, 278,
305 | 3bitr3rd 299 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑡↑2) <
(𝑅↑2) ↔ (-𝑅 < 𝑡 ∧ 𝑡 < 𝑅))) |
| 307 | 295, 294 | posdifd 10614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((𝑡↑2) <
(𝑅↑2) ↔ 0 <
((𝑅↑2) − (𝑡↑2)))) |
| 308 | 306, 307 | bitr3d 270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) ↔ 0 < ((𝑅↑2) − (𝑡↑2)))) |
| 309 | 308 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ ℝ)
→ ((-𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
| 310 | 309 | exp4b 632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ ℝ
→ (-𝑅 < 𝑡 → (𝑡 < 𝑅 → 0 < ((𝑅↑2) − (𝑡↑2)))))) |
| 311 | 310 | 3impd 1281 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ ((𝑡 ∈ ℝ
∧ -𝑅 < 𝑡 ∧ 𝑡 < 𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
| 312 | 275, 311 | sylbid 230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (𝑡 ∈ (-𝑅(,)𝑅) → 0 < ((𝑅↑2) − (𝑡↑2)))) |
| 313 | 312 | imp 445 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 < ((𝑅↑2) − (𝑡↑2))) |
| 314 | 298, 297,
313 | ltled 10185 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((𝑅↑2) − (𝑡↑2))) |
| 315 | 297, 314 | resqrtcld 14156 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℝ) |
| 316 | 315 | renegcld 10457 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ∈
ℝ) |
| 317 | 316, 315,
28 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))) ∈ dom
vol) |
| 318 | 317, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 319 | 297, 314 | sqrtge0d 14159 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ (√‘((𝑅↑2) − (𝑡↑2)))) |
| 320 | 315, 315,
319, 319 | addge0d 10603 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 321 | 293 | breq2d 4665 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ 0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2)))))) |
| 322 | 315, 316 | subge0d 10617 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) −
-(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
| 323 | 321, 322 | bitr3d 270 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (0 ≤ ((√‘((𝑅↑2) − (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))
↔ -(√‘((𝑅↑2) − (𝑡↑2))) ≤ (√‘((𝑅↑2) − (𝑡↑2))))) |
| 324 | 320, 323 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → -(√‘((𝑅↑2) − (𝑡↑2))) ≤
(√‘((𝑅↑2)
− (𝑡↑2)))) |
| 325 | 316, 315,
324, 47 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol*‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
| 326 | 318, 325 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) →
(vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2))))) =
((√‘((𝑅↑2)
− (𝑡↑2)))
− -(√‘((𝑅↑2) − (𝑡↑2))))) |
| 327 | | ax-resscn 9993 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
| 328 | 327 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ ℝ ⊆ ℂ) |
| 329 | 272, 270,
78 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅[,]𝑅) ⊆
ℝ) |
| 330 | | rpcn 11841 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℂ) |
| 331 | 330 | sqcld 13006 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (𝑅↑2) ∈
ℂ) |
| 332 | 331 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ) |
| 333 | 329 | sselda 3603 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℝ) |
| 334 | 333 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑢 ∈ ℂ) |
| 335 | 330 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ) |
| 336 | | rpne0 11848 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ≠
0) |
| 337 | 336 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0) |
| 338 | 334, 335,
337 | divcld 10801 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (𝑢 / 𝑅) ∈ ℂ) |
| 339 | | asincl 24600 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 / 𝑅) ∈ ℂ → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ) |
| 340 | 338, 339 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑢 / 𝑅)) ∈ ℂ) |
| 341 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ) |
| 342 | 338 | sqcld 13006 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅)↑2) ∈ ℂ) |
| 343 | 341, 342 | subcld 10392 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑢 / 𝑅)↑2)) ∈ ℂ) |
| 344 | 343 | sqrtcld 14176 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑢 / 𝑅)↑2))) ∈ ℂ) |
| 345 | 338, 344 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) ∈
ℂ) |
| 346 | 340, 345 | addcld 10059 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) ∈
ℂ) |
| 347 | 332, 346 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) ∈
ℂ) |
| 348 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 349 | 348 | tgioo2 22606 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 350 | | iccntr 22624 |
. . . . . . . . . . . . . . 15
⊢ ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅)) |
| 351 | 272, 270,
350 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ ((int‘(topGen‘ran (,)))‘(-𝑅[,]𝑅)) = (-𝑅(,)𝑅)) |
| 352 | 328, 329,
347, 349, 348, 351 | dvmptntr 23734 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (ℝ D (𝑢 ∈ (-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))) |
| 353 | | areacirclem1 33500 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅(,)𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
| 354 | 352, 353 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
| 355 | 354 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2)))))) |
| 356 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑡 → (𝑢↑2) = (𝑡↑2)) |
| 357 | 356 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑡 → ((𝑅↑2) − (𝑢↑2)) = ((𝑅↑2) − (𝑡↑2))) |
| 358 | 357 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑡 → (√‘((𝑅↑2) − (𝑢↑2))) = (√‘((𝑅↑2) − (𝑡↑2)))) |
| 359 | 358 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑡 → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 360 | 359 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) ∧ 𝑢 = 𝑡) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) = (2 ·
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 361 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → 𝑡 ∈ (-𝑅(,)𝑅)) |
| 362 | | ovexd 6680 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) ∈
V) |
| 363 | 355, 360,
361, 362 | fvmptd 6288 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (2 · (√‘((𝑅↑2) − (𝑡↑2))))) |
| 364 | 157, 291 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ) |
| 365 | 364 | 2timesd 11275 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (2 · (√‘((𝑅↑2) − (𝑡↑2)))) =
((√‘((𝑅↑2)
− (𝑡↑2))) +
(√‘((𝑅↑2)
− (𝑡↑2))))) |
| 366 | 363, 365 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = ((√‘((𝑅↑2) − (𝑡↑2))) + (√‘((𝑅↑2) − (𝑡↑2))))) |
| 367 | 293, 326,
366 | 3eqtr4rd 2667 |
. . . . . . . 8
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → ((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) = (vol‘(-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))))) |
| 368 | 285, 367 | eqtr4d 2659 |
. . . . . . 7
⊢ ((𝑅 ∈ ℝ+
∧ 𝑡 ∈ (-𝑅(,)𝑅)) → (vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) =
((ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡)) |
| 369 | 368 | itgeq2dv 23548 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡) |
| 370 | 270, 270,
301, 301 | addge0d 10603 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ 0 ≤ (𝑅 + 𝑅)) |
| 371 | 330, 330 | subnegd 10399 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ (𝑅 − -𝑅) = (𝑅 + 𝑅)) |
| 372 | 371 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 −
-𝑅) ↔ 0 ≤ (𝑅 + 𝑅))) |
| 373 | 270, 272 | subge0d 10617 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 −
-𝑅) ↔ -𝑅 ≤ 𝑅)) |
| 374 | 372, 373 | bitr3d 270 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (0 ≤ (𝑅 + 𝑅) ↔ -𝑅 ≤ 𝑅)) |
| 375 | 370, 374 | mpbid 222 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ≤ 𝑅) |
| 376 | | 2cn 11091 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
| 377 | 162, 327 | sstri 3612 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ⊆ ℂ |
| 378 | | ssid 3624 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
| 379 | 376, 377,
378 | 3pm3.2i 1239 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ
⊆ ℂ) |
| 380 | | cncfmptc 22714 |
. . . . . . . . . 10
⊢ ((2
∈ ℂ ∧ (-𝑅(,)𝑅) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑢 ∈
(-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
| 381 | 379, 380 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ 2) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
| 382 | | ioossicc 12259 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) |
| 383 | | resmpt 5449 |
. . . . . . . . . . 11
⊢ ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2))))) |
| 384 | 382, 383 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) = (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) |
| 385 | | areacirclem2 33501 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
| 386 | 270, 301,
385 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
| 387 | | rescncf 22700 |
. . . . . . . . . . 11
⊢ ((-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ) → ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ))) |
| 388 | 382, 386,
387 | mpsyl 68 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ↾ (-𝑅(,)𝑅)) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
| 389 | 384, 388 | syl5eqelr 2706 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (√‘((𝑅↑2) − (𝑢↑2)))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
| 390 | 381, 389 | mulcncf 23215 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
| 391 | 354, 390 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈ ((-𝑅(,)𝑅)–cn→ℂ)) |
| 392 | 382 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ⊆ (-𝑅[,]𝑅)) |
| 393 | | ioombl 23333 |
. . . . . . . . . . 11
⊢ (-𝑅(,)𝑅) ∈ dom vol |
| 394 | 393 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (-𝑅(,)𝑅) ∈ dom vol) |
| 395 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑢 ∈ (-𝑅[,]𝑅)) → (2 · (√‘((𝑅↑2) − (𝑢↑2)))) ∈
V) |
| 396 | | areacirclem3 33502 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅[,]𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
| 397 | 392, 394,
395, 396 | iblss 23571 |
. . . . . . . . 9
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
| 398 | 270, 301,
397 | syl2anc 693 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅(,)𝑅) ↦ (2 · (√‘((𝑅↑2) − (𝑢↑2))))) ∈
𝐿1) |
| 399 | 354, 398 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (ℝ D (𝑢 ∈
(-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) ∈
𝐿1) |
| 400 | | areacirclem4 33503 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) |
| 401 | 272, 270,
375, 391, 399, 400 | ftc2nc 33494 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)((ℝ D (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))))‘𝑡) d𝑡 = (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅))) |
| 402 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))))) = (𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))) |
| 403 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑅 → (𝑢 / 𝑅) = (𝑅 / 𝑅)) |
| 404 | 403 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(𝑅 / 𝑅))) |
| 405 | 403 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑅 → ((𝑢 / 𝑅)↑2) = ((𝑅 / 𝑅)↑2)) |
| 406 | 405 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((𝑅 / 𝑅)↑2))) |
| 407 | 406 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 −
((𝑅 / 𝑅)↑2)))) |
| 408 | 403, 407 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) |
| 409 | 404, 408 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) |
| 410 | 409 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑅 → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
| 411 | 410 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = 𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
| 412 | | ubicc2 12289 |
. . . . . . . . . . 11
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ* ∧ -𝑅 ≤ 𝑅) → 𝑅 ∈ (-𝑅[,]𝑅)) |
| 413 | 273, 274,
375, 412 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈ (-𝑅[,]𝑅)) |
| 414 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) ∈ V) |
| 415 | 402, 411,
413, 414 | fvmptd 6288 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · ((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))))) |
| 416 | 330, 336 | dividd 10799 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅 / 𝑅) = 1) |
| 417 | 416 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(𝑅 /
𝑅)) =
(arcsin‘1)) |
| 418 | | asin1 24621 |
. . . . . . . . . . . . 13
⊢
(arcsin‘1) = (π / 2) |
| 419 | 417, 418 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(𝑅 /
𝑅)) = (π /
2)) |
| 420 | 416 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅)↑2) =
(1↑2)) |
| 421 | | sq1 12958 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1↑2) = 1 |
| 422 | 420, 421 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅)↑2) = 1) |
| 423 | 422 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − ((𝑅 /
𝑅)↑2)) = (1 −
1)) |
| 424 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ 1 ∈ ℂ) |
| 425 | 424 | subidd 10380 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − 1) = 0) |
| 426 | 423, 425 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (1 − ((𝑅 /
𝑅)↑2)) =
0) |
| 427 | 426 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((𝑅 / 𝑅)↑2))) =
(√‘0)) |
| 428 | 427, 196 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((𝑅 / 𝑅)↑2))) = 0) |
| 429 | 428 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · (√‘(1
− ((𝑅 / 𝑅)↑2)))) = ((𝑅 / 𝑅) · 0)) |
| 430 | 330, 330,
336 | divcld 10801 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (𝑅 / 𝑅) ∈
ℂ) |
| 431 | 430 | mul01d 10235 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · 0) =
0) |
| 432 | 429, 431 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((𝑅 / 𝑅) · (√‘(1
− ((𝑅 / 𝑅)↑2)))) =
0) |
| 433 | 419, 432 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(𝑅 /
𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = ((π / 2) +
0)) |
| 434 | | 2ne0 11113 |
. . . . . . . . . . . . . 14
⊢ 2 ≠
0 |
| 435 | 254, 376,
434 | divcli 10767 |
. . . . . . . . . . . . 13
⊢ (π /
2) ∈ ℂ |
| 436 | 435 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (π / 2) ∈ ℂ) |
| 437 | 436 | addid1d 10236 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((π / 2) + 0) = (π / 2)) |
| 438 | 433, 437 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(𝑅 /
𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2))))) = (π / 2)) |
| 439 | 438 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(𝑅 / 𝑅)) + ((𝑅 / 𝑅) · (√‘(1 − ((𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · (π /
2))) |
| 440 | 415, 439 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) = ((𝑅↑2) · (π /
2))) |
| 441 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = -𝑅 → (𝑢 / 𝑅) = (-𝑅 / 𝑅)) |
| 442 | 441 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑢 = -𝑅 → (arcsin‘(𝑢 / 𝑅)) = (arcsin‘(-𝑅 / 𝑅))) |
| 443 | 441 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = -𝑅 → ((𝑢 / 𝑅)↑2) = ((-𝑅 / 𝑅)↑2)) |
| 444 | 443 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = -𝑅 → (1 − ((𝑢 / 𝑅)↑2)) = (1 − ((-𝑅 / 𝑅)↑2))) |
| 445 | 444 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = -𝑅 → (√‘(1 − ((𝑢 / 𝑅)↑2))) = (√‘(1 −
((-𝑅 / 𝑅)↑2)))) |
| 446 | 441, 445 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑢 = -𝑅 → ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) |
| 447 | 442, 446 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑢 = -𝑅 → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) |
| 448 | 447 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = -𝑅) → ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2))))) = ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) |
| 449 | 448 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ ℝ+
∧ 𝑢 = -𝑅) → ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))))) |
| 450 | | lbicc2 12288 |
. . . . . . . . . . 11
⊢ ((-𝑅 ∈ ℝ*
∧ 𝑅 ∈
ℝ* ∧ -𝑅 ≤ 𝑅) → -𝑅 ∈ (-𝑅[,]𝑅)) |
| 451 | 273, 274,
375, 450 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈ (-𝑅[,]𝑅)) |
| 452 | | ovexd 6680 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) ∈ V) |
| 453 | 402, 449,
451, 452 | fvmptd 6288 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · ((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))))) |
| 454 | 330, 330,
336 | divnegd 10814 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -(𝑅 / 𝑅) = (-𝑅 / 𝑅)) |
| 455 | 416 | negeqd 10275 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -(𝑅 / 𝑅) = -1) |
| 456 | 454, 455 | eqtr3d 2658 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅 / 𝑅) = -1) |
| 457 | 456 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(-𝑅 /
𝑅)) =
(arcsin‘-1)) |
| 458 | | ax-1cn 9994 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 459 | | asinneg 24613 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℂ → (arcsin‘-1) = -(arcsin‘1)) |
| 460 | 458, 459 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(arcsin‘-1) = -(arcsin‘1) |
| 461 | 418 | negeqi 10274 |
. . . . . . . . . . . . . 14
⊢
-(arcsin‘1) = -(π / 2) |
| 462 | 460, 461 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢
(arcsin‘-1) = -(π / 2) |
| 463 | 457, 462 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ (arcsin‘(-𝑅 /
𝑅)) = -(π /
2)) |
| 464 | 456 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅)↑2) =
(-1↑2)) |
| 465 | | neg1sqe1 12959 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-1↑2) = 1 |
| 466 | 464, 465 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅)↑2) = 1) |
| 467 | 466 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℝ+
→ (1 − ((-𝑅 /
𝑅)↑2)) = (1 −
1)) |
| 468 | 467, 425 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℝ+
→ (1 − ((-𝑅 /
𝑅)↑2)) =
0) |
| 469 | 468 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((-𝑅 / 𝑅)↑2))) =
(√‘0)) |
| 470 | 469, 196 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (√‘(1 − ((-𝑅 / 𝑅)↑2))) = 0) |
| 471 | 470 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · (√‘(1
− ((-𝑅 / 𝑅)↑2)))) = ((-𝑅 / 𝑅) · 0)) |
| 472 | 272 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℝ+
→ -𝑅 ∈
ℂ) |
| 473 | 472, 330,
336 | divcld 10801 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ ℝ+
→ (-𝑅 / 𝑅) ∈
ℂ) |
| 474 | 473 | mul01d 10235 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · 0) =
0) |
| 475 | 471, 474 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ ((-𝑅 / 𝑅) · (√‘(1
− ((-𝑅 / 𝑅)↑2)))) =
0) |
| 476 | 463, 475 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(-𝑅 /
𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) = (-(π / 2) +
0)) |
| 477 | 435 | negcli 10349 |
. . . . . . . . . . . . 13
⊢ -(π /
2) ∈ ℂ |
| 478 | 477 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ -(π / 2) ∈ ℂ) |
| 479 | 478 | addid1d 10236 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℝ+
→ (-(π / 2) + 0) = -(π / 2)) |
| 480 | 476, 479 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝑅 ∈ ℝ+
→ ((arcsin‘(-𝑅 /
𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2))))) = -(π /
2)) |
| 481 | 480 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((arcsin‘(-𝑅 / 𝑅)) + ((-𝑅 / 𝑅) · (√‘(1 −
((-𝑅 / 𝑅)↑2)))))) = ((𝑅↑2) · -(π /
2))) |
| 482 | 453, 481 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅) = ((𝑅↑2) · -(π /
2))) |
| 483 | 440, 482 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (((𝑅↑2) · (π / 2)) −
((𝑅↑2) · -(π
/ 2)))) |
| 484 | 435, 435 | subnegi 10360 |
. . . . . . . . . . 11
⊢ ((π /
2) − -(π / 2)) = ((π / 2) + (π / 2)) |
| 485 | | pidiv2halves 24219 |
. . . . . . . . . . 11
⊢ ((π /
2) + (π / 2)) = π |
| 486 | 484, 485 | eqtri 2644 |
. . . . . . . . . 10
⊢ ((π /
2) − -(π / 2)) = π |
| 487 | 486 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ ((π / 2) − -(π / 2)) = π) |
| 488 | 487 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((π / 2) − -(π / 2))) = ((𝑅↑2) · π)) |
| 489 | 331, 436,
478 | subdid 10486 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
((π / 2) − -(π / 2))) = (((𝑅↑2) · (π / 2)) −
((𝑅↑2) · -(π
/ 2)))) |
| 490 | 254 | a1i 11 |
. . . . . . . . 9
⊢ (𝑅 ∈ ℝ+
→ π ∈ ℂ) |
| 491 | 331, 490 | mulcomd 10061 |
. . . . . . . 8
⊢ (𝑅 ∈ ℝ+
→ ((𝑅↑2) ·
π) = (π · (𝑅↑2))) |
| 492 | 488, 489,
491 | 3eqtr3d 2664 |
. . . . . . 7
⊢ (𝑅 ∈ ℝ+
→ (((𝑅↑2)
· (π / 2)) − ((𝑅↑2) · -(π / 2))) = (π
· (𝑅↑2))) |
| 493 | 483, 492 | eqtrd 2656 |
. . . . . 6
⊢ (𝑅 ∈ ℝ+
→ (((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘𝑅) − ((𝑢 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑢 / 𝑅)) + ((𝑢 / 𝑅) · (√‘(1 − ((𝑢 / 𝑅)↑2)))))))‘-𝑅)) = (π · (𝑅↑2))) |
| 494 | 369, 401,
493 | 3eqtrd 2660 |
. . . . 5
⊢ (𝑅 ∈ ℝ+
→ ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
| 495 | 267, 494 | syl 17 |
. . . 4
⊢ (((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑅 ≠ 0) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
| 496 | 260, 495 | pm2.61dane 2881 |
. . 3
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → ∫(-𝑅(,)𝑅)(vol‘if((abs‘𝑡) ≤ 𝑅, (-(√‘((𝑅↑2) − (𝑡↑2)))[,](√‘((𝑅↑2) − (𝑡↑2)))), ∅)) d𝑡 = (π · (𝑅↑2))) |
| 497 | 161, 239,
496 | 3eqtr3d 2664 |
. 2
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) →
∫ℝ(vol‘(𝑆
“ {𝑡})) d𝑡 = (π · (𝑅↑2))) |
| 498 | 156, 497 | eqtrd 2656 |
1
⊢ ((𝑅 ∈ ℝ ∧ 0 ≤
𝑅) → (area‘𝑆) = (π · (𝑅↑2))) |