Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssfz12 Structured version   Visualization version   GIF version

Theorem ssfz12 41324
Description: Subset relationship for finite sets of sequential integers. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfz12 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfz12
StepHypRef Expression
1 eluz 11701 . . . 4 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ∈ (ℤ𝐾) ↔ 𝐾𝐿))
21biimp3ar 1433 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (ℤ𝐾))
3 eluzfz1 12348 . . 3 (𝐿 ∈ (ℤ𝐾) → 𝐾 ∈ (𝐾...𝐿))
42, 3syl 17 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐾 ∈ (𝐾...𝐿))
5 eluzfz2 12349 . . . 4 (𝐿 ∈ (ℤ𝐾) → 𝐿 ∈ (𝐾...𝐿))
62, 5syl 17 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → 𝐿 ∈ (𝐾...𝐿))
7 ssel2 3598 . . . . . . . 8 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → 𝐾 ∈ (𝑀...𝑁))
8 ssel2 3598 . . . . . . . . . . 11 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → 𝐿 ∈ (𝑀...𝑁))
9 elfzuz3 12339 . . . . . . . . . . 11 (𝐿 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐿))
10 eluz2 11693 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
11 eluz2 11693 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁))
12 pm3.21 464 . . . . . . . . . . . . . . . . . 18 (𝐿𝑁 → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
13123ad2ant3 1084 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿𝑁) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1411, 13sylbi 207 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁)))
1514a1i 11 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑁 ∈ (ℤ𝐿) → (𝑀𝐾 → (𝑀𝐾𝐿𝑁))))
1615com13 88 . . . . . . . . . . . . . 14 (𝑀𝐾 → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
17163ad2ant3 1084 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
1810, 17sylbi 207 . . . . . . . . . . . 12 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
19 elfzuz 12338 . . . . . . . . . . . 12 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2018, 19syl11 33 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
218, 9, 203syl 18 . . . . . . . . . 10 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐿 ∈ (𝐾...𝐿)) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁))))
2221ex 450 . . . . . . . . 9 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝑀𝐾𝐿𝑁)))))
2322com4t 93 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
247, 23syl 17 . . . . . . 7 (((𝐾...𝐿) ⊆ (𝑀...𝑁) ∧ 𝐾 ∈ (𝐾...𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2524ex 450 . . . . . 6 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2625com24 95 . . . . 5 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁))))))
2726pm2.43i 52 . . . 4 ((𝐾...𝐿) ⊆ (𝑀...𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → (𝐿 ∈ (𝐾...𝐿) → (𝑀𝐾𝐿𝑁)))))
2827com14 96 . . 3 (𝐿 ∈ (𝐾...𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))))
296, 28mpcom 38 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → (𝐾 ∈ (𝐾...𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁))))
304, 29mpd 15 1 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾𝐿) → ((𝐾...𝐿) ⊆ (𝑀...𝑁) → (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cle 10075  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator