Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0int Structured version   Visualization version   GIF version

Theorem bj-0int 33055
Description: If 𝐴 is a collection of subsets of 𝑋, like a topology, two equivalent ways to say that arbitrary intersections of elements of 𝐴 relative to 𝑋 belong to some class 𝐵 (in typical applications, 𝐴 itself). (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
bj-0int (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋

Proof of Theorem bj-0int
StepHypRef Expression
1 ssv 3625 . . . . . . . . 9 𝑋 ⊆ V
2 int0 4490 . . . . . . . . 9 ∅ = V
31, 2sseqtr4i 3638 . . . . . . . 8 𝑋
4 df-ss 3588 . . . . . . . 8 (𝑋 ∅ ↔ (𝑋 ∅) = 𝑋)
53, 4mpbi 220 . . . . . . 7 (𝑋 ∅) = 𝑋
65eqcomi 2631 . . . . . 6 𝑋 = (𝑋 ∅)
76eleq1i 2692 . . . . 5 (𝑋𝐵 ↔ (𝑋 ∅) ∈ 𝐵)
87a1i 11 . . . 4 (𝐴 ⊆ 𝒫 𝑋 → (𝑋𝐵 ↔ (𝑋 ∅) ∈ 𝐵))
9 eldifsn 4317 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅))
10 sstr2 3610 . . . . . . . . . . 11 (𝑥𝐴 → (𝐴 ⊆ 𝒫 𝑋𝑥 ⊆ 𝒫 𝑋))
11 bj-intss 33053 . . . . . . . . . . 11 (𝑥 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → 𝑥𝑋))
1210, 11syl6 35 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → 𝑥𝑋)))
13 elpwi 4168 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1412, 13syl11 33 . . . . . . . . 9 (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ 𝒫 𝐴 → (𝑥 ≠ ∅ → 𝑥𝑋)))
1514impd 447 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝑋 → ((𝑥 ∈ 𝒫 𝐴𝑥 ≠ ∅) → 𝑥𝑋))
169, 15syl5bi 232 . . . . . . 7 (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥𝑋))
17 df-ss 3588 . . . . . . . . 9 ( 𝑥𝑋 ↔ ( 𝑥𝑋) = 𝑥)
18 incom 3805 . . . . . . . . . . 11 ( 𝑥𝑋) = (𝑋 𝑥)
1918eqeq1i 2627 . . . . . . . . . 10 (( 𝑥𝑋) = 𝑥 ↔ (𝑋 𝑥) = 𝑥)
20 eqcom 2629 . . . . . . . . . 10 ((𝑋 𝑥) = 𝑥 𝑥 = (𝑋 𝑥))
2119, 20sylbb 209 . . . . . . . . 9 (( 𝑥𝑋) = 𝑥 𝑥 = (𝑋 𝑥))
2217, 21sylbi 207 . . . . . . . 8 ( 𝑥𝑋 𝑥 = (𝑋 𝑥))
23 eleq1 2689 . . . . . . . . 9 ( 𝑥 = (𝑋 𝑥) → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵))
2423a1i 11 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝑋 → ( 𝑥 = (𝑋 𝑥) → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵)))
2522, 24syl5 34 . . . . . . 7 (𝐴 ⊆ 𝒫 𝑋 → ( 𝑥𝑋 → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵)))
2616, 25syld 47 . . . . . 6 (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵)))
2726ralrimiv 2965 . . . . 5 (𝐴 ⊆ 𝒫 𝑋 → ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵))
28 ralbi 3068 . . . . 5 (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})( 𝑥𝐵 ↔ (𝑋 𝑥) ∈ 𝐵) → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵))
2927, 28syl 17 . . . 4 (𝐴 ⊆ 𝒫 𝑋 → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵 ↔ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵))
308, 29anbi12d 747 . . 3 (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ ((𝑋 ∅) ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵)))
31 ancom 466 . . 3 (((𝑋 ∅) ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵) ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵 ∧ (𝑋 ∅) ∈ 𝐵))
3230, 31syl6bb 276 . 2 (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵 ∧ (𝑋 ∅) ∈ 𝐵)))
33 0elpw 4834 . . 3 ∅ ∈ 𝒫 𝐴
34 inteq 4478 . . . . 5 (𝑥 = ∅ → 𝑥 = ∅)
35 ineq2 3808 . . . . 5 ( 𝑥 = ∅ → (𝑋 𝑥) = (𝑋 ∅))
36 eleq1 2689 . . . . 5 ((𝑋 𝑥) = (𝑋 ∅) → ((𝑋 𝑥) ∈ 𝐵 ↔ (𝑋 ∅) ∈ 𝐵))
3734, 35, 363syl 18 . . . 4 (𝑥 = ∅ → ((𝑋 𝑥) ∈ 𝐵 ↔ (𝑋 ∅) ∈ 𝐵))
3837bj-raldifsn 33054 . . 3 (∅ ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵 ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵 ∧ (𝑋 ∅) ∈ 𝐵)))
3933, 38ax-mp 5 . 2 (∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵 ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 𝑥) ∈ 𝐵 ∧ (𝑋 ∅) ∈ 𝐵))
4032, 39syl6bbr 278 1 (𝐴 ⊆ 𝒫 𝑋 → ((𝑋𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅}) 𝑥𝐵) ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑋 𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-uni 4437  df-int 4476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator