Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0int Structured version   Visualization version   Unicode version

Theorem bj-0int 33055
Description: If  A is a collection of subsets of  X, like a topology, two equivalent ways to say that arbitrary intersections of elements of  A relative to  X belong to some class  B (in typical applications,  A itself). (Contributed by BJ, 7-Dec-2021.)
Assertion
Ref Expression
bj-0int  |-  ( A 
C_  ~P X  ->  (
( X  e.  B  /\  A. x  e.  ( ~P A  \  { (/)
} ) |^| x  e.  B )  <->  A. x  e.  ~P  A ( X  i^i  |^| x )  e.  B ) )
Distinct variable groups:    x, A    x, B    x, X

Proof of Theorem bj-0int
StepHypRef Expression
1 ssv 3625 . . . . . . . . 9  |-  X  C_  _V
2 int0 4490 . . . . . . . . 9  |-  |^| (/)  =  _V
31, 2sseqtr4i 3638 . . . . . . . 8  |-  X  C_  |^| (/)
4 df-ss 3588 . . . . . . . 8  |-  ( X 
C_  |^| (/)  <->  ( X  i^i  |^| (/) )  =  X
)
53, 4mpbi 220 . . . . . . 7  |-  ( X  i^i  |^| (/) )  =  X
65eqcomi 2631 . . . . . 6  |-  X  =  ( X  i^i  |^| (/) )
76eleq1i 2692 . . . . 5  |-  ( X  e.  B  <->  ( X  i^i  |^| (/) )  e.  B
)
87a1i 11 . . . 4  |-  ( A 
C_  ~P X  ->  ( X  e.  B  <->  ( X  i^i  |^| (/) )  e.  B
) )
9 eldifsn 4317 . . . . . . . 8  |-  ( x  e.  ( ~P A  \  { (/) } )  <->  ( x  e.  ~P A  /\  x  =/=  (/) ) )
10 sstr2 3610 . . . . . . . . . . 11  |-  ( x 
C_  A  ->  ( A  C_  ~P X  ->  x  C_  ~P X ) )
11 bj-intss 33053 . . . . . . . . . . 11  |-  ( x 
C_  ~P X  ->  (
x  =/=  (/)  ->  |^| x  C_  X ) )
1210, 11syl6 35 . . . . . . . . . 10  |-  ( x 
C_  A  ->  ( A  C_  ~P X  -> 
( x  =/=  (/)  ->  |^| x  C_  X ) ) )
13 elpwi 4168 . . . . . . . . . 10  |-  ( x  e.  ~P A  ->  x  C_  A )
1412, 13syl11 33 . . . . . . . . 9  |-  ( A 
C_  ~P X  ->  (
x  e.  ~P A  ->  ( x  =/=  (/)  ->  |^| x  C_  X ) ) )
1514impd 447 . . . . . . . 8  |-  ( A 
C_  ~P X  ->  (
( x  e.  ~P A  /\  x  =/=  (/) )  ->  |^| x  C_  X ) )
169, 15syl5bi 232 . . . . . . 7  |-  ( A 
C_  ~P X  ->  (
x  e.  ( ~P A  \  { (/) } )  ->  |^| x  C_  X ) )
17 df-ss 3588 . . . . . . . . 9  |-  ( |^| x  C_  X  <->  ( |^| x  i^i  X )  = 
|^| x )
18 incom 3805 . . . . . . . . . . 11  |-  ( |^| x  i^i  X )  =  ( X  i^i  |^| x )
1918eqeq1i 2627 . . . . . . . . . 10  |-  ( (
|^| x  i^i  X
)  =  |^| x  <->  ( X  i^i  |^| x
)  =  |^| x
)
20 eqcom 2629 . . . . . . . . . 10  |-  ( ( X  i^i  |^| x
)  =  |^| x  <->  |^| x  =  ( X  i^i  |^| x ) )
2119, 20sylbb 209 . . . . . . . . 9  |-  ( (
|^| x  i^i  X
)  =  |^| x  ->  |^| x  =  ( X  i^i  |^| x
) )
2217, 21sylbi 207 . . . . . . . 8  |-  ( |^| x  C_  X  ->  |^| x  =  ( X  i^i  |^| x ) )
23 eleq1 2689 . . . . . . . . 9  |-  ( |^| x  =  ( X  i^i  |^| x )  -> 
( |^| x  e.  B  <->  ( X  i^i  |^| x
)  e.  B ) )
2423a1i 11 . . . . . . . 8  |-  ( A 
C_  ~P X  ->  ( |^| x  =  ( X  i^i  |^| x )  -> 
( |^| x  e.  B  <->  ( X  i^i  |^| x
)  e.  B ) ) )
2522, 24syl5 34 . . . . . . 7  |-  ( A 
C_  ~P X  ->  ( |^| x  C_  X  -> 
( |^| x  e.  B  <->  ( X  i^i  |^| x
)  e.  B ) ) )
2616, 25syld 47 . . . . . 6  |-  ( A 
C_  ~P X  ->  (
x  e.  ( ~P A  \  { (/) } )  ->  ( |^| x  e.  B  <->  ( X  i^i  |^| x )  e.  B ) ) )
2726ralrimiv 2965 . . . . 5  |-  ( A 
C_  ~P X  ->  A. x  e.  ( ~P A  \  { (/) } ) (
|^| x  e.  B  <->  ( X  i^i  |^| x
)  e.  B ) )
28 ralbi 3068 . . . . 5  |-  ( A. x  e.  ( ~P A  \  { (/) } ) ( |^| x  e.  B  <->  ( X  i^i  |^| x )  e.  B
)  ->  ( A. x  e.  ( ~P A  \  { (/) } )
|^| x  e.  B  <->  A. x  e.  ( ~P A  \  { (/) } ) ( X  i^i  |^| x )  e.  B
) )
2927, 28syl 17 . . . 4  |-  ( A 
C_  ~P X  ->  ( A. x  e.  ( ~P A  \  { (/) } ) |^| x  e.  B  <->  A. x  e.  ( ~P A  \  { (/)
} ) ( X  i^i  |^| x )  e.  B ) )
308, 29anbi12d 747 . . 3  |-  ( A 
C_  ~P X  ->  (
( X  e.  B  /\  A. x  e.  ( ~P A  \  { (/)
} ) |^| x  e.  B )  <->  ( ( X  i^i  |^| (/) )  e.  B  /\  A. x  e.  ( ~P A  \  { (/)
} ) ( X  i^i  |^| x )  e.  B ) ) )
31 ancom 466 . . 3  |-  ( ( ( X  i^i  |^| (/) )  e.  B  /\  A. x  e.  ( ~P A  \  { (/) } ) ( X  i^i  |^| x )  e.  B
)  <->  ( A. x  e.  ( ~P A  \  { (/) } ) ( X  i^i  |^| x
)  e.  B  /\  ( X  i^i  |^| (/) )  e.  B ) )
3230, 31syl6bb 276 . 2  |-  ( A 
C_  ~P X  ->  (
( X  e.  B  /\  A. x  e.  ( ~P A  \  { (/)
} ) |^| x  e.  B )  <->  ( A. x  e.  ( ~P A  \  { (/) } ) ( X  i^i  |^| x )  e.  B  /\  ( X  i^i  |^| (/) )  e.  B ) ) )
33 0elpw 4834 . . 3  |-  (/)  e.  ~P A
34 inteq 4478 . . . . 5  |-  ( x  =  (/)  ->  |^| x  =  |^| (/) )
35 ineq2 3808 . . . . 5  |-  ( |^| x  =  |^| (/)  ->  ( X  i^i  |^| x )  =  ( X  i^i  |^| (/) ) )
36 eleq1 2689 . . . . 5  |-  ( ( X  i^i  |^| x
)  =  ( X  i^i  |^| (/) )  ->  (
( X  i^i  |^| x )  e.  B  <->  ( X  i^i  |^| (/) )  e.  B ) )
3734, 35, 363syl 18 . . . 4  |-  ( x  =  (/)  ->  ( ( X  i^i  |^| x
)  e.  B  <->  ( X  i^i  |^| (/) )  e.  B
) )
3837bj-raldifsn 33054 . . 3  |-  ( (/)  e.  ~P A  ->  ( A. x  e.  ~P  A ( X  i^i  |^| x )  e.  B  <->  ( A. x  e.  ( ~P A  \  { (/)
} ) ( X  i^i  |^| x )  e.  B  /\  ( X  i^i  |^| (/) )  e.  B
) ) )
3933, 38ax-mp 5 . 2  |-  ( A. x  e.  ~P  A
( X  i^i  |^| x )  e.  B  <->  ( A. x  e.  ( ~P A  \  { (/)
} ) ( X  i^i  |^| x )  e.  B  /\  ( X  i^i  |^| (/) )  e.  B
) )
4032, 39syl6bbr 278 1  |-  ( A 
C_  ~P X  ->  (
( X  e.  B  /\  A. x  e.  ( ~P A  \  { (/)
} ) |^| x  e.  B )  <->  A. x  e.  ~P  A ( X  i^i  |^| x )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-uni 4437  df-int 4476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator