| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0int | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| bj-0int |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3625 |
. . . . . . . . 9
| |
| 2 | int0 4490 |
. . . . . . . . 9
| |
| 3 | 1, 2 | sseqtr4i 3638 |
. . . . . . . 8
|
| 4 | df-ss 3588 |
. . . . . . . 8
| |
| 5 | 3, 4 | mpbi 220 |
. . . . . . 7
|
| 6 | 5 | eqcomi 2631 |
. . . . . 6
|
| 7 | 6 | eleq1i 2692 |
. . . . 5
|
| 8 | 7 | a1i 11 |
. . . 4
|
| 9 | eldifsn 4317 |
. . . . . . . 8
| |
| 10 | sstr2 3610 |
. . . . . . . . . . 11
| |
| 11 | bj-intss 33053 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | syl6 35 |
. . . . . . . . . 10
|
| 13 | elpwi 4168 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | syl11 33 |
. . . . . . . . 9
|
| 15 | 14 | impd 447 |
. . . . . . . 8
|
| 16 | 9, 15 | syl5bi 232 |
. . . . . . 7
|
| 17 | df-ss 3588 |
. . . . . . . . 9
| |
| 18 | incom 3805 |
. . . . . . . . . . 11
| |
| 19 | 18 | eqeq1i 2627 |
. . . . . . . . . 10
|
| 20 | eqcom 2629 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | sylbb 209 |
. . . . . . . . 9
|
| 22 | 17, 21 | sylbi 207 |
. . . . . . . 8
|
| 23 | eleq1 2689 |
. . . . . . . . 9
| |
| 24 | 23 | a1i 11 |
. . . . . . . 8
|
| 25 | 22, 24 | syl5 34 |
. . . . . . 7
|
| 26 | 16, 25 | syld 47 |
. . . . . 6
|
| 27 | 26 | ralrimiv 2965 |
. . . . 5
|
| 28 | ralbi 3068 |
. . . . 5
| |
| 29 | 27, 28 | syl 17 |
. . . 4
|
| 30 | 8, 29 | anbi12d 747 |
. . 3
|
| 31 | ancom 466 |
. . 3
| |
| 32 | 30, 31 | syl6bb 276 |
. 2
|
| 33 | 0elpw 4834 |
. . 3
| |
| 34 | inteq 4478 |
. . . . 5
| |
| 35 | ineq2 3808 |
. . . . 5
| |
| 36 | eleq1 2689 |
. . . . 5
| |
| 37 | 34, 35, 36 | 3syl 18 |
. . . 4
|
| 38 | 37 | bj-raldifsn 33054 |
. . 3
|
| 39 | 33, 38 | ax-mp 5 |
. 2
|
| 40 | 32, 39 | syl6bbr 278 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-uni 4437 df-int 4476 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |