![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version |
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 7560). (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snnz 4309 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
3 | 2 | nesymi 2851 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
4 | 3 | nex 1731 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
5 | bj-elsngl 32956 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
6 | rexex 3002 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
7 | 5, 6 | sylbi 207 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
8 | 4, 7 | mto 188 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
9 | 8 | nelir 2900 | 1 ⊢ ∅ ∉ sngl 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∉ wnel 2897 ∃wrex 2913 ∅c0 3915 {csn 4177 sngl bj-csngl 32953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 df-bj-sngl 32954 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |