Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelsngl Structured version   Visualization version   GIF version

Theorem bj-0nelsngl 32959
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 7560). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-0nelsngl ∅ ∉ sngl 𝐴

Proof of Theorem bj-0nelsngl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6 𝑥 ∈ V
21snnz 4309 . . . . 5 {𝑥} ≠ ∅
32nesymi 2851 . . . 4 ¬ ∅ = {𝑥}
43nex 1731 . . 3 ¬ ∃𝑥∅ = {𝑥}
5 bj-elsngl 32956 . . . 4 (∅ ∈ sngl 𝐴 ↔ ∃𝑥𝐴 ∅ = {𝑥})
6 rexex 3002 . . . 4 (∃𝑥𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥})
75, 6sylbi 207 . . 3 (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥})
84, 7mto 188 . 2 ¬ ∅ ∈ sngl 𝐴
98nelir 2900 1 ∅ ∉ sngl 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wex 1704  wcel 1990  wnel 2897  wrex 2913  c0 3915  {csn 4177  sngl bj-csngl 32953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-bj-sngl 32954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator