![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplex | Structured version Visualization version GIF version |
Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1uplex | ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr11val 32993 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
2 | bj-pr1ex 32994 | . . 3 ⊢ (⦅𝐴⦆ ∈ V → pr1 ⦅𝐴⦆ ∈ V) | |
3 | 1, 2 | syl5eqelr 2706 | . 2 ⊢ (⦅𝐴⦆ ∈ V → 𝐴 ∈ V) |
4 | df-bj-1upl 32986 | . . 3 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
5 | p0ex 4853 | . . . 4 ⊢ {∅} ∈ V | |
6 | bj-xtagex 32977 | . . . 4 ⊢ ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V) |
8 | 4, 7 | syl5eqel 2705 | . 2 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
9 | 3, 8 | impbii 199 | 1 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 {csn 4177 × cxp 5112 tag bj-ctag 32962 ⦅bj-c1upl 32985 pr1 bj-cpr1 32988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-bj-sngl 32954 df-bj-tag 32963 df-bj-proj 32979 df-bj-1upl 32986 df-bj-pr1 32989 |
This theorem is referenced by: bj-2uplex 33010 |
Copyright terms: Public domain | W3C validator |