Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-csbsnlem Structured version   Visualization version   GIF version

Theorem bj-csbsnlem 32898
Description: Lemma for bj-csbsn 32899 (in this lemma, 𝑥 cannot occur in 𝐴). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
Assertion
Ref Expression
bj-csbsnlem 𝐴 / 𝑥{𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-csbsnlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 abid 2610 . . . 4 (𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ [𝐴 / 𝑥]𝑦 ∈ {𝑥})
2 df-sbc 3436 . . . 4 ([𝐴 / 𝑥]𝑦 ∈ {𝑥} ↔ 𝐴 ∈ {𝑥𝑦 ∈ {𝑥}})
3 clelab 2748 . . . . 5 (𝐴 ∈ {𝑥𝑦 ∈ {𝑥}} ↔ ∃𝑥(𝑥 = 𝐴𝑦 ∈ {𝑥}))
4 velsn 4193 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
54anbi2i 730 . . . . . 6 ((𝑥 = 𝐴𝑦 ∈ {𝑥}) ↔ (𝑥 = 𝐴𝑦 = 𝑥))
65exbii 1774 . . . . 5 (∃𝑥(𝑥 = 𝐴𝑦 ∈ {𝑥}) ↔ ∃𝑥(𝑥 = 𝐴𝑦 = 𝑥))
7 eqeq2 2633 . . . . . . . 8 (𝑥 = 𝐴 → (𝑦 = 𝑥𝑦 = 𝐴))
87pm5.32i 669 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑥) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
98exbii 1774 . . . . . 6 (∃𝑥(𝑥 = 𝐴𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝐴𝑦 = 𝐴))
10 19.41v 1914 . . . . . 6 (∃𝑥(𝑥 = 𝐴𝑦 = 𝐴) ↔ (∃𝑥 𝑥 = 𝐴𝑦 = 𝐴))
11 simpr 477 . . . . . . 7 ((∃𝑥 𝑥 = 𝐴𝑦 = 𝐴) → 𝑦 = 𝐴)
12 eqvisset 3211 . . . . . . . . 9 (𝑦 = 𝐴𝐴 ∈ V)
13 elisset 3215 . . . . . . . . 9 (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴)
1412, 13syl 17 . . . . . . . 8 (𝑦 = 𝐴 → ∃𝑥 𝑥 = 𝐴)
1514ancri 575 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑥 𝑥 = 𝐴𝑦 = 𝐴))
1611, 15impbii 199 . . . . . 6 ((∃𝑥 𝑥 = 𝐴𝑦 = 𝐴) ↔ 𝑦 = 𝐴)
179, 10, 163bitri 286 . . . . 5 (∃𝑥(𝑥 = 𝐴𝑦 = 𝑥) ↔ 𝑦 = 𝐴)
183, 6, 173bitri 286 . . . 4 (𝐴 ∈ {𝑥𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴)
191, 2, 183bitri 286 . . 3 (𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴)
20 df-csb 3534 . . . 4 𝐴 / 𝑥{𝑥} = {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}}
2120eleq2i 2693 . . 3 (𝑦𝐴 / 𝑥{𝑥} ↔ 𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}})
22 velsn 4193 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
2319, 21, 223bitr4i 292 . 2 (𝑦𝐴 / 𝑥{𝑥} ↔ 𝑦 ∈ {𝐴})
2423eqriv 2619 1 𝐴 / 𝑥{𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  Vcvv 3200  [wsbc 3435  csb 3533  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-sn 4178
This theorem is referenced by:  bj-csbsn  32899
  Copyright terms: Public domain W3C validator