![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqvisset | Structured version Visualization version GIF version |
Description: A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 3207 and issetri 3210. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3203 | . 2 ⊢ 𝑥 ∈ V | |
2 | eleq1 2689 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
3 | 1, 2 | mpbii 223 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
This theorem is referenced by: ceqex 3333 moeq3 3383 mo2icl 3385 eusvnfb 4862 oprabv 6703 elxp5 7111 xpsnen 8044 fival 8318 dffi2 8329 tz9.12lem1 8650 m1detdiag 20403 dvfsumlem1 23789 dchrisumlema 25177 dchrisumlem2 25179 fnimage 32036 bj-csbsnlem 32898 disjf1o 39378 mptssid 39450 fourierdlem49 40372 |
Copyright terms: Public domain | W3C validator |