Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elccinfty Structured version   Visualization version   GIF version

Theorem bj-elccinfty 33101
Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-elccinfty (𝐴 ∈ (-π(,]π) → (inftyexpi ‘𝐴) ∈ ℂ)

Proof of Theorem bj-elccinfty
StepHypRef Expression
1 df-bj-inftyexpi 33094 . . . . 5 inftyexpi = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
21funmpt2 5927 . . . 4 Fun inftyexpi
32jctl 564 . . 3 (𝐴 ∈ dom inftyexpi → (Fun inftyexpi ∧ 𝐴 ∈ dom inftyexpi ))
4 opex 4932 . . . . 5 𝑥, ℂ⟩ ∈ V
54, 1dmmpti 6023 . . . 4 dom inftyexpi = (-π(,]π)
65eqcomi 2631 . . 3 (-π(,]π) = dom inftyexpi
73, 6eleq2s 2719 . 2 (𝐴 ∈ (-π(,]π) → (Fun inftyexpi ∧ 𝐴 ∈ dom inftyexpi ))
8 fvelrn 6352 . 2 ((Fun inftyexpi ∧ 𝐴 ∈ dom inftyexpi ) → (inftyexpi ‘𝐴) ∈ ran inftyexpi )
9 df-bj-ccinfty 33099 . . . . 5 = ran inftyexpi
109eqcomi 2631 . . . 4 ran inftyexpi = ℂ
1110eleq2i 2693 . . 3 ((inftyexpi ‘𝐴) ∈ ran inftyexpi ↔ (inftyexpi ‘𝐴) ∈ ℂ)
1211biimpi 206 . 2 ((inftyexpi ‘𝐴) ∈ ran inftyexpi → (inftyexpi ‘𝐴) ∈ ℂ)
137, 8, 123syl 18 1 (𝐴 ∈ (-π(,]π) → (inftyexpi ‘𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  cop 4183  dom cdm 5114  ran crn 5115  Fun wfun 5882  cfv 5888  (class class class)co 6650  cc 9934  -cneg 10267  (,]cioc 12176  πcpi 14797  inftyexpi cinftyexpi 33093  cccinfty 33098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-bj-inftyexpi 33094  df-bj-ccinfty 33099
This theorem is referenced by:  bj-pinftyccb  33108
  Copyright terms: Public domain W3C validator